Properties

Label 7650.bk
Number of curves $2$
Conductor $7650$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bk1")
 
E.isogeny_class()
 

Elliptic curves in class 7650.bk

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7650.bk1 7650cp2 \([1, -1, 1, -366305, -1824303]\) \(19088138515945/11040808032\) \(3144042599737500000\) \([]\) \(144000\) \(2.2388\)  
7650.bk2 7650cp1 \([1, -1, 1, -248630, 47779647]\) \(3730569358698025/102\) \(46473750\) \([]\) \(28800\) \(1.4341\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 7650.bk have rank \(1\).

Complex multiplication

The elliptic curves in class 7650.bk do not have complex multiplication.

Modular form 7650.2.a.bk

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 3 q^{7} + q^{8} + 3 q^{11} - 4 q^{13} - 3 q^{14} + q^{16} + q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.