Properties

Label 7650.bm
Number of curves $2$
Conductor $7650$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bm1")
 
E.isogeny_class()
 

Elliptic curves in class 7650.bm

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7650.bm1 7650bn1 \([1, -1, 1, -3440, 78507]\) \(-6667713086715/136\) \(-91800\) \([]\) \(6048\) \(0.48295\) \(\Gamma_0(N)\)-optimal
7650.bm2 7650bn2 \([1, -1, 1, -3215, 89047]\) \(-7466356035/2515456\) \(-1237793011200\) \([]\) \(18144\) \(1.0323\)  

Rank

sage: E.rank()
 

The elliptic curves in class 7650.bm have rank \(1\).

Complex multiplication

The elliptic curves in class 7650.bm do not have complex multiplication.

Modular form 7650.2.a.bm

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 2 q^{7} + q^{8} - 6 q^{11} + 4 q^{13} - 2 q^{14} + q^{16} + q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.