Properties

Label 7650.bm
Number of curves 22
Conductor 76507650
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bm1") E.isogeny_class()
 

Elliptic curves in class 7650.bm

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7650.bm1 7650bn1 [1,1,1,3440,78507][1, -1, 1, -3440, 78507] 6667713086715/136-6667713086715/136 91800-91800 [][] 60486048 0.482950.48295 Γ0(N)\Gamma_0(N)-optimal
7650.bm2 7650bn2 [1,1,1,3215,89047][1, -1, 1, -3215, 89047] 7466356035/2515456-7466356035/2515456 1237793011200-1237793011200 [][] 1814418144 1.03231.0323  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 7650.bm have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
221T1 - T
3311
5511
17171T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 1+2T+7T2 1 + 2 T + 7 T^{2} 1.7.c
1111 1+6T+11T2 1 + 6 T + 11 T^{2} 1.11.g
1313 14T+13T2 1 - 4 T + 13 T^{2} 1.13.ae
1919 12T+19T2 1 - 2 T + 19 T^{2} 1.19.ac
2323 19T+23T2 1 - 9 T + 23 T^{2} 1.23.aj
2929 1+6T+29T2 1 + 6 T + 29 T^{2} 1.29.g
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 7650.bm do not have complex multiplication.

Modular form 7650.2.a.bm

Copy content sage:E.q_eigenform(10)
 
q+q2+q42q7+q86q11+4q132q14+q16+q17+2q19+O(q20)q + q^{2} + q^{4} - 2 q^{7} + q^{8} - 6 q^{11} + 4 q^{13} - 2 q^{14} + q^{16} + q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.