sage:E = EllipticCurve("bm1")
E.isogeny_class()
Elliptic curves in class 7650.bm
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
7650.bm1 |
7650bn1 |
[1,−1,1,−3440,78507] |
−6667713086715/136 |
−91800 |
[] |
6048 |
0.48295
|
Γ0(N)-optimal |
7650.bm2 |
7650bn2 |
[1,−1,1,−3215,89047] |
−7466356035/2515456 |
−1237793011200 |
[] |
18144 |
1.0323
|
|
sage:E.rank()
The elliptic curves in class 7650.bm have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1−T |
3 | 1 |
5 | 1 |
17 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1+2T+7T2 |
1.7.c
|
11 |
1+6T+11T2 |
1.11.g
|
13 |
1−4T+13T2 |
1.13.ae
|
19 |
1−2T+19T2 |
1.19.ac
|
23 |
1−9T+23T2 |
1.23.aj
|
29 |
1+6T+29T2 |
1.29.g
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 7650.bm do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1331)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.