Show commands:
SageMath
E = EllipticCurve("bm1")
E.isogeny_class()
Elliptic curves in class 7650.bm
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
7650.bm1 | 7650bn1 | \([1, -1, 1, -3440, 78507]\) | \(-6667713086715/136\) | \(-91800\) | \([]\) | \(6048\) | \(0.48295\) | \(\Gamma_0(N)\)-optimal |
7650.bm2 | 7650bn2 | \([1, -1, 1, -3215, 89047]\) | \(-7466356035/2515456\) | \(-1237793011200\) | \([]\) | \(18144\) | \(1.0323\) |
Rank
sage: E.rank()
The elliptic curves in class 7650.bm have rank \(1\).
Complex multiplication
The elliptic curves in class 7650.bm do not have complex multiplication.Modular form 7650.2.a.bm
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.