Properties

Label 7650k1
Conductor 76507650
Discriminant 7.017×1015-7.017\times 10^{15}
j-invariant 11987427957075570425344 -\frac{11987427957075}{570425344}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3x2110067x14594059y^2+xy=x^3-x^2-110067x-14594059 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3x2z110067xz214594059z3y^2z+xyz=x^3-x^2z-110067xz^2-14594059z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x31761075x935780850y^2=x^3-1761075x-935780850 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 0, -110067, -14594059])
 
gp: E = ellinit([1, -1, 0, -110067, -14594059])
 
magma: E := EllipticCurve([1, -1, 0, -110067, -14594059]);
 
oscar: E = elliptic_curve([1, -1, 0, -110067, -14594059])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(979,28063)(979, 28063)4.34540322900180301803985432374.3454032290018030180398543237\infty

Integral points

(979,28063) \left(979, 28063\right) , (979,29042) \left(979, -29042\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  7650 7650  = 23252172 \cdot 3^{2} \cdot 5^{2} \cdot 17
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  7017301278720000-7017301278720000 = 1225395417-1 \cdot 2^{25} \cdot 3^{9} \cdot 5^{4} \cdot 17
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  11987427957075570425344 -\frac{11987427957075}{570425344}  = 1225335217126093-1 \cdot 2^{-25} \cdot 3^{3} \cdot 5^{2} \cdot 17^{-1} \cdot 2609^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.80318575827721716144318920211.8031857582772171614431892021
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.442747237631434768029835496670.44274723763143476802983549667
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.10900058085442681.1090005808544268
Szpiro ratio: σm\sigma_{m} ≈ 5.2020538301925425.202053830192542

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 4.34540322900180301803985432374.3454032290018030180398543237
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.130692562675243148112083631610.13069256267524314811208363161
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 6 6  = 1231 1\cdot2\cdot3\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 3.40747130313313257128731033173.4074713031331325712873103317
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.407471303L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.1306934.3454036123.407471303\displaystyle 3.407471303 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.130693 \cdot 4.345403 \cdot 6}{1^2} \approx 3.407471303

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   7650.2.a.ba

qq2+q4+2q7q8+2q112q14+q16+q176q19+O(q20) q - q^{2} + q^{4} + 2 q^{7} - q^{8} + 2 q^{11} - 2 q^{14} + q^{16} + q^{17} - 6 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 50400
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I25I_{25} nonsplit multiplicative 1 1 25 25
33 22 IIIIII^{*} additive 1 2 9 0
55 33 IVIV additive -1 2 4 0
1717 11 I1I_{1} split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[241, 2, 241, 3], [407, 2, 406, 3], [1, 0, 2, 1], [1, 2, 0, 1], [103, 2, 0, 1], [137, 2, 137, 3], [205, 2, 205, 3], [1, 1, 407, 0]]
 
GL(2,Integers(408)).subgroup(gens)
 
Gens := [[241, 2, 241, 3], [407, 2, 406, 3], [1, 0, 2, 1], [1, 2, 0, 1], [103, 2, 0, 1], [137, 2, 137, 3], [205, 2, 205, 3], [1, 1, 407, 0]];
 
sub<GL(2,Integers(408))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 408=23317 408 = 2^{3} \cdot 3 \cdot 17 , index 22, genus 00, and generators

(24122413),(40724063),(1021),(1201),(103201),(13721373),(20522053),(114070)\left(\begin{array}{rr} 241 & 2 \\ 241 & 3 \end{array}\right),\left(\begin{array}{rr} 407 & 2 \\ 406 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 103 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 137 & 2 \\ 137 & 3 \end{array}\right),\left(\begin{array}{rr} 205 & 2 \\ 205 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 407 & 0 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[408])K:=\Q(E[408]) is a degree-28877783042887778304 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/408Z)\GL_2(\Z/408\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 1275=35217 1275 = 3 \cdot 5^{2} \cdot 17
33 additive 22 850=25217 850 = 2 \cdot 5^{2} \cdot 17
55 additive 1414 153=3217 153 = 3^{2} \cdot 17
1717 split multiplicative 1818 450=23252 450 = 2 \cdot 3^{2} \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 7650k consists of this curve only.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.10200.1 Z/2Z\Z/2\Z not in database
66 6.0.42448320000.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.1826604270000.2 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit add add ord ord ss split ord ord ord ord ord ord ord ord
λ\lambda-invariant(s) 2 - - 1 1 1,3 2 1 1 1 1 1 1 1 1
μ\mu-invariant(s) 0 - - 0 0 0,0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.