Properties

Label 7650u
Number of curves $2$
Conductor $7650$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("u1")
 
E.isogeny_class()
 

Elliptic curves in class 7650u

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7650.bc1 7650u1 \([1, -1, 0, -1692, -22784]\) \(47045881/6800\) \(77456250000\) \([2]\) \(9216\) \(0.81473\) \(\Gamma_0(N)\)-optimal
7650.bc2 7650u2 \([1, -1, 0, 2808, -126284]\) \(214921799/722500\) \(-8229726562500\) \([2]\) \(18432\) \(1.1613\)  

Rank

sage: E.rank()
 

The elliptic curves in class 7650u have rank \(1\).

Complex multiplication

The elliptic curves in class 7650u do not have complex multiplication.

Modular form 7650.2.a.u

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 2 q^{7} - q^{8} + 2 q^{11} + 6 q^{13} - 2 q^{14} + q^{16} + q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.