Properties

Label 7650u
Number of curves 22
Conductor 76507650
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Elliptic curves in class 7650u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7650.bc1 7650u1 [1,1,0,1692,22784][1, -1, 0, -1692, -22784] 47045881/680047045881/6800 7745625000077456250000 [2][2] 92169216 0.814730.81473 Γ0(N)\Gamma_0(N)-optimal
7650.bc2 7650u2 [1,1,0,2808,126284][1, -1, 0, 2808, -126284] 214921799/722500214921799/722500 8229726562500-8229726562500 [2][2] 1843218432 1.16131.1613  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 7650u have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
221+T1 + T
3311
5511
17171T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 1T+7T2 1 - T + 7 T^{2} 1.7.ab
1111 1+3T+11T2 1 + 3 T + 11 T^{2} 1.11.d
1313 14T+13T2 1 - 4 T + 13 T^{2} 1.13.ae
1919 15T+19T2 1 - 5 T + 19 T^{2} 1.19.af
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 16T+29T2 1 - 6 T + 29 T^{2} 1.29.ag
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 7650u do not have complex multiplication.

Modular form 7650.2.a.u

Copy content sage:E.q_eigenform(10)
 
qq2+q4+2q7q8+2q11+6q132q14+q16+q178q19+O(q20)q - q^{2} + q^{4} + 2 q^{7} - q^{8} + 2 q^{11} + 6 q^{13} - 2 q^{14} + q^{16} + q^{17} - 8 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.