sage:E = EllipticCurve("u1")
E.isogeny_class()
Elliptic curves in class 7650u
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
7650.bc1 |
7650u1 |
[1,−1,0,−1692,−22784] |
47045881/6800 |
77456250000 |
[2] |
9216 |
0.81473
|
Γ0(N)-optimal |
7650.bc2 |
7650u2 |
[1,−1,0,2808,−126284] |
214921799/722500 |
−8229726562500 |
[2] |
18432 |
1.1613
|
|
sage:E.rank()
The elliptic curves in class 7650u have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
3 | 1 |
5 | 1 |
17 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1−T+7T2 |
1.7.ab
|
11 |
1+3T+11T2 |
1.11.d
|
13 |
1−4T+13T2 |
1.13.ae
|
19 |
1−5T+19T2 |
1.19.af
|
23 |
1+23T2 |
1.23.a
|
29 |
1−6T+29T2 |
1.29.ag
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 7650u do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.