Show commands:
SageMath
E = EllipticCurve("u1")
E.isogeny_class()
Elliptic curves in class 7650u
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
7650.bc1 | 7650u1 | \([1, -1, 0, -1692, -22784]\) | \(47045881/6800\) | \(77456250000\) | \([2]\) | \(9216\) | \(0.81473\) | \(\Gamma_0(N)\)-optimal |
7650.bc2 | 7650u2 | \([1, -1, 0, 2808, -126284]\) | \(214921799/722500\) | \(-8229726562500\) | \([2]\) | \(18432\) | \(1.1613\) |
Rank
sage: E.rank()
The elliptic curves in class 7650u have rank \(1\).
Complex multiplication
The elliptic curves in class 7650u do not have complex multiplication.Modular form 7650.2.a.u
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.