Properties

Label 7650z1
Conductor 76507650
Discriminant 16730550-16730550
j-invariant 121945918 -\frac{121945}{918}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3x227x+211y^2+xy=x^3-x^2-27x+211 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3x2z27xz2+211z3y^2z+xyz=x^3-x^2z-27xz^2+211z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3435x+13070y^2=x^3-435x+13070 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 0, -27, 211])
 
gp: E = ellinit([1, -1, 0, -27, 211])
 
magma: E := EllipticCurve([1, -1, 0, -27, 211]);
 
oscar: E = elliptic_curve([1, -1, 0, -27, 211])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(5,11)(5, 11)0.339323997476294456406544428980.33932399747629445640654442898\infty

Integral points

(7,8) \left(-7, 8\right) , (7,1) \left(-7, -1\right) , (5,11) \left(5, 11\right) , (5,16) \left(5, -16\right) , (225,3256) \left(225, 3256\right) , (225,3481) \left(225, -3481\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  7650 7650  = 23252172 \cdot 3^{2} \cdot 5^{2} \cdot 17
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  16730550-16730550 = 12395217-1 \cdot 2 \cdot 3^{9} \cdot 5^{2} \cdot 17
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  121945918 -\frac{121945}{918}  = 121335171293-1 \cdot 2^{-1} \cdot 3^{-3} \cdot 5 \cdot 17^{-1} \cdot 29^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.0690683259313013144917020228340.069068325931301314491702022834
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.74847747047510359363938048450-0.74847747047510359363938048450
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.85538603690796240.8553860369079624
Szpiro ratio: σm\sigma_{m} ≈ 2.70188812473972.7018881247397

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.339323997476294456406544428980.33932399747629445640654442898
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 1.88508878713591504867752817461.8850887871359150486775281746
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 12211 1\cdot2^{2}\cdot1\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 2.55862345139479286286672490012.5586234513947928628667249001
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.558623451L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.8850890.3393244122.558623451\displaystyle 2.558623451 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.885089 \cdot 0.339324 \cdot 4}{1^2} \approx 2.558623451

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   7650.2.a.d

qq2+q44q7q8+2q116q13+4q14+q16+q17+4q19+O(q20) q - q^{2} + q^{4} - 4 q^{7} - q^{8} + 2 q^{11} - 6 q^{13} + 4 q^{14} + q^{16} + q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 2880
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I1I_{1} nonsplit multiplicative 1 1 1 1
33 44 I3I_{3}^{*} additive -1 2 9 3
55 11 IIII additive 1 2 2 0
1717 11 I1I_{1} split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[241, 2, 241, 3], [407, 2, 406, 3], [1, 0, 2, 1], [1, 2, 0, 1], [103, 2, 0, 1], [137, 2, 137, 3], [205, 2, 205, 3], [1, 1, 407, 0]]
 
GL(2,Integers(408)).subgroup(gens)
 
Gens := [[241, 2, 241, 3], [407, 2, 406, 3], [1, 0, 2, 1], [1, 2, 0, 1], [103, 2, 0, 1], [137, 2, 137, 3], [205, 2, 205, 3], [1, 1, 407, 0]];
 
sub<GL(2,Integers(408))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 408=23317 408 = 2^{3} \cdot 3 \cdot 17 , index 22, genus 00, and generators

(24122413),(40724063),(1021),(1201),(103201),(13721373),(20522053),(114070)\left(\begin{array}{rr} 241 & 2 \\ 241 & 3 \end{array}\right),\left(\begin{array}{rr} 407 & 2 \\ 406 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 103 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 137 & 2 \\ 137 & 3 \end{array}\right),\left(\begin{array}{rr} 205 & 2 \\ 205 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 407 & 0 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[408])K:=\Q(E[408]) is a degree-28877783042887778304 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/408Z)\GL_2(\Z/408\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 3825=325217 3825 = 3^{2} \cdot 5^{2} \cdot 17
33 additive 66 850=25217 850 = 2 \cdot 5^{2} \cdot 17
55 additive 1010 306=23217 306 = 2 \cdot 3^{2} \cdot 17
1717 split multiplicative 1818 450=23252 450 = 2 \cdot 3^{2} \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 7650z consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 2550t1, its twist by 3-3.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.10200.1 Z/2Z\Z/2\Z not in database
66 6.0.42448320000.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.45665106750000.2 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit add add ord ord ord split ord ord ss ord ord ord ord ord
λ\lambda-invariant(s) 2 - - 1 1 1 2 1 1 1,1 1 1 1 1 1
μ\mu-invariant(s) 0 - - 0 0 0 0 0 0 0,0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.