Properties

Label 77760.bu
Number of curves 11
Conductor 7776077760
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bu1") E.isogeny_class()
 

Elliptic curves in class 77760.bu

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
77760.bu1 77760cm1 [0,0,0,999252,451382928][0, 0, 0, 999252, 451382928] 13857745529076264/1907348632812513857745529076264/19073486328125 151875000000000000000-151875000000000000000 [][] 18604801860480 2.55822.5582 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 77760.bu1 has rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
3311
551+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 12T+7T2 1 - 2 T + 7 T^{2} 1.7.ac
1111 1+3T+11T2 1 + 3 T + 11 T^{2} 1.11.d
1313 12T+13T2 1 - 2 T + 13 T^{2} 1.13.ac
1717 1+3T+17T2 1 + 3 T + 17 T^{2} 1.17.d
1919 1+6T+19T2 1 + 6 T + 19 T^{2} 1.19.g
2323 1+T+23T2 1 + T + 23 T^{2} 1.23.b
2929 1+T+29T2 1 + T + 29 T^{2} 1.29.b
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 77760.bu do not have complex multiplication.

Modular form 77760.2.a.bu

Copy content sage:E.q_eigenform(10)
 
qq5+2q73q11+2q133q176q19+O(q20)q - q^{5} + 2 q^{7} - 3 q^{11} + 2 q^{13} - 3 q^{17} - 6 q^{19} + O(q^{20}) Copy content Toggle raw display