sage:E = EllipticCurve("dg1")
E.isogeny_class()
Elliptic curves in class 77760.dg
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
77760.dg1 |
77760er1 |
[0,0,0,−9612,−362736] |
−171307467/10 |
−5733089280 |
[] |
62208 |
0.93516
|
Γ0(N)-optimal |
77760.dg2 |
77760er2 |
[0,0,0,−972,−983664] |
−243/1000 |
−417942208512000 |
[] |
186624 |
1.4845
|
|
sage:E.rank()
The elliptic curves in class 77760.dg have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
5 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1+2T+7T2 |
1.7.c
|
11 |
1+11T2 |
1.11.a
|
13 |
1−T+13T2 |
1.13.ab
|
17 |
1+3T+17T2 |
1.17.d
|
19 |
1−2T+19T2 |
1.19.ac
|
23 |
1+23T2 |
1.23.a
|
29 |
1+3T+29T2 |
1.29.d
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 77760.dg do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1331)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.