Properties

Label 78033b
Number of curves 44
Conductor 7803378033
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 78033b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
78033.a3 78033b1 [1,0,0,2082,31773][1, 0, 0, -2082, -31773] 389017/57389017/57 146246405313146246405313 [2][2] 7257672576 0.867300.86730 Γ0(N)\Gamma_0(N)-optimal
78033.a2 78033b2 [1,0,0,8927,292680][1, 0, 0, -8927, 292680] 30664297/324930664297/3249 83360451028418336045102841 [2,2][2, 2] 145152145152 1.21391.2139  
78033.a4 78033b3 [1,0,0,11608,1446747][1, 0, 0, 11608, 1446747] 67419143/39096367419143/390963 1003104094041867-1003104094041867 [2][2] 290304290304 1.56041.5604  
78033.a1 78033b4 [1,0,0,138982,19930985][1, 0, 0, -138982, 19930985] 115714886617/1539115714886617/1539 39486529434513948652943451 [2][2] 290304290304 1.56041.5604  

Rank

sage: E.rank()
 

The elliptic curves in class 78033b have rank 11.

Complex multiplication

The elliptic curves in class 78033b do not have complex multiplication.

Modular form 78033.2.a.b

sage: E.q_eigenform(10)
 
qq2+q3q4+2q5q6+3q8+q92q10q126q13+2q15q16+6q17q18+q19+O(q20)q - q^{2} + q^{3} - q^{4} + 2 q^{5} - q^{6} + 3 q^{8} + q^{9} - 2 q^{10} - q^{12} - 6 q^{13} + 2 q^{15} - q^{16} + 6 q^{17} - q^{18} + q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.