E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 78033b
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
78033.a3 |
78033b1 |
[1,0,0,−2082,−31773] |
389017/57 |
146246405313 |
[2] |
72576 |
0.86730
|
Γ0(N)-optimal |
78033.a2 |
78033b2 |
[1,0,0,−8927,292680] |
30664297/3249 |
8336045102841 |
[2,2] |
145152 |
1.2139
|
|
78033.a4 |
78033b3 |
[1,0,0,11608,1446747] |
67419143/390963 |
−1003104094041867 |
[2] |
290304 |
1.5604
|
|
78033.a1 |
78033b4 |
[1,0,0,−138982,19930985] |
115714886617/1539 |
3948652943451 |
[2] |
290304 |
1.5604
|
|
The elliptic curves in class 78033b have
rank 1.
The elliptic curves in class 78033b do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.