Properties

Label 78033b
Number of curves $4$
Conductor $78033$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 78033b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
78033.a3 78033b1 \([1, 0, 0, -2082, -31773]\) \(389017/57\) \(146246405313\) \([2]\) \(72576\) \(0.86730\) \(\Gamma_0(N)\)-optimal
78033.a2 78033b2 \([1, 0, 0, -8927, 292680]\) \(30664297/3249\) \(8336045102841\) \([2, 2]\) \(145152\) \(1.2139\)  
78033.a4 78033b3 \([1, 0, 0, 11608, 1446747]\) \(67419143/390963\) \(-1003104094041867\) \([2]\) \(290304\) \(1.5604\)  
78033.a1 78033b4 \([1, 0, 0, -138982, 19930985]\) \(115714886617/1539\) \(3948652943451\) \([2]\) \(290304\) \(1.5604\)  

Rank

sage: E.rank()
 

The elliptic curves in class 78033b have rank \(1\).

Complex multiplication

The elliptic curves in class 78033b do not have complex multiplication.

Modular form 78033.2.a.b

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} - q^{4} + 2 q^{5} - q^{6} + 3 q^{8} + q^{9} - 2 q^{10} - q^{12} - 6 q^{13} + 2 q^{15} - q^{16} + 6 q^{17} - q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.