Properties

Label 78400ko
Number of curves 22
Conductor 7840078400
CM no
Rank 22
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("ko1")
 
E.isogeny_class()
 

Elliptic curves in class 78400ko

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
78400.df2 78400ko1 [0,1,0,8167,399713][0, -1, 0, 8167, -399713] 4096/74096/7 102942875000000-102942875000000 [][] 153600153600 1.37371.3737 Γ0(N)\Gamma_0(N)-optimal
78400.df1 78400ko2 [0,1,0,726833,239945287][0, -1, 0, -726833, 239945287] 2887553024/16807-2887553024/16807 247165842875000000-247165842875000000 [][] 768000768000 2.17842.1784  

Rank

sage: E.rank()
 

The elliptic curves in class 78400ko have rank 22.

Complex multiplication

The elliptic curves in class 78400ko do not have complex multiplication.

Modular form 78400.2.a.ko

sage: E.q_eigenform(10)
 
qq32q93q11+q137q17+O(q20)q - q^{3} - 2 q^{9} - 3 q^{11} + q^{13} - 7 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1551)\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.