E = EllipticCurve("t1")
E.isogeny_class()
Elliptic curves in class 7920.t
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
7920.t1 |
7920bi3 |
[0,0,0,−263938467,−1650339826526] |
680995599504466943307169/52207031250000000 |
155889360000000000000000 |
[2] |
1720320 |
3.4985
|
|
7920.t2 |
7920bi2 |
[0,0,0,−17594787,−22155907934] |
201738262891771037089/45727545600000000 |
136541719520870400000000 |
[2,2] |
860160 |
3.1519
|
|
7920.t3 |
7920bi1 |
[0,0,0,−5798307,5077445794] |
7220044159551112609/448454983680000 |
1339079405988741120000 |
[2] |
430080 |
2.8054
|
Γ0(N)-optimal |
7920.t4 |
7920bi4 |
[0,0,0,40005213,−136906627934] |
2371297246710590562911/4084000833203280000 |
−12194761143931662827520000 |
[2] |
1720320 |
3.4985
|
|
The elliptic curves in class 7920.t have
rank 0.
The elliptic curves in class 7920.t do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.