Properties

Label 7920.t
Number of curves $4$
Conductor $7920$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("t1")
 
E.isogeny_class()
 

Elliptic curves in class 7920.t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7920.t1 7920bi3 \([0, 0, 0, -263938467, -1650339826526]\) \(680995599504466943307169/52207031250000000\) \(155889360000000000000000\) \([2]\) \(1720320\) \(3.4985\)  
7920.t2 7920bi2 \([0, 0, 0, -17594787, -22155907934]\) \(201738262891771037089/45727545600000000\) \(136541719520870400000000\) \([2, 2]\) \(860160\) \(3.1519\)  
7920.t3 7920bi1 \([0, 0, 0, -5798307, 5077445794]\) \(7220044159551112609/448454983680000\) \(1339079405988741120000\) \([2]\) \(430080\) \(2.8054\) \(\Gamma_0(N)\)-optimal
7920.t4 7920bi4 \([0, 0, 0, 40005213, -136906627934]\) \(2371297246710590562911/4084000833203280000\) \(-12194761143931662827520000\) \([2]\) \(1720320\) \(3.4985\)  

Rank

sage: E.rank()
 

The elliptic curves in class 7920.t have rank \(0\).

Complex multiplication

The elliptic curves in class 7920.t do not have complex multiplication.

Modular form 7920.2.a.t

sage: E.q_eigenform(10)
 
\(q + q^{5} - 4 q^{7} - q^{11} + 2 q^{13} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.