Properties

Label 7920.t
Number of curves 44
Conductor 79207920
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("t1")
 
E.isogeny_class()
 

Elliptic curves in class 7920.t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7920.t1 7920bi3 [0,0,0,263938467,1650339826526][0, 0, 0, -263938467, -1650339826526] 680995599504466943307169/52207031250000000680995599504466943307169/52207031250000000 155889360000000000000000155889360000000000000000 [2][2] 17203201720320 3.49853.4985  
7920.t2 7920bi2 [0,0,0,17594787,22155907934][0, 0, 0, -17594787, -22155907934] 201738262891771037089/45727545600000000201738262891771037089/45727545600000000 136541719520870400000000136541719520870400000000 [2,2][2, 2] 860160860160 3.15193.1519  
7920.t3 7920bi1 [0,0,0,5798307,5077445794][0, 0, 0, -5798307, 5077445794] 7220044159551112609/4484549836800007220044159551112609/448454983680000 13390794059887411200001339079405988741120000 [2][2] 430080430080 2.80542.8054 Γ0(N)\Gamma_0(N)-optimal
7920.t4 7920bi4 [0,0,0,40005213,136906627934][0, 0, 0, 40005213, -136906627934] 2371297246710590562911/40840008332032800002371297246710590562911/4084000833203280000 12194761143931662827520000-12194761143931662827520000 [2][2] 17203201720320 3.49853.4985  

Rank

sage: E.rank()
 

The elliptic curves in class 7920.t have rank 00.

Complex multiplication

The elliptic curves in class 7920.t do not have complex multiplication.

Modular form 7920.2.a.t

sage: E.q_eigenform(10)
 
q+q54q7q11+2q132q174q19+O(q20)q + q^{5} - 4 q^{7} - q^{11} + 2 q^{13} - 2 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.