Properties

Label 7935.d
Number of curves $8$
Conductor $7935$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 7935.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7935.d1 7935b7 \([1, 1, 1, -1142651, 469654508]\) \(1114544804970241/405\) \(59954535045\) \([2]\) \(50688\) \(1.8586\)  
7935.d2 7935b5 \([1, 1, 1, -71426, 7313798]\) \(272223782641/164025\) \(24281586693225\) \([2, 2]\) \(25344\) \(1.5120\)  
7935.d3 7935b8 \([1, 1, 1, -58201, 10122788]\) \(-147281603041/215233605\) \(-31862298058849845\) \([2]\) \(50688\) \(1.8586\)  
7935.d4 7935b3 \([1, 1, 1, -42331, -3369886]\) \(56667352321/15\) \(2220538335\) \([2]\) \(12672\) \(1.1655\)  
7935.d5 7935b4 \([1, 1, 1, -5301, 66498]\) \(111284641/50625\) \(7494316880625\) \([2, 2]\) \(12672\) \(1.1655\)  
7935.d6 7935b2 \([1, 1, 1, -2656, -53056]\) \(13997521/225\) \(33308075025\) \([2, 2]\) \(6336\) \(0.81890\)  
7935.d7 7935b1 \([1, 1, 1, -11, -2272]\) \(-1/15\) \(-2220538335\) \([2]\) \(3168\) \(0.47232\) \(\Gamma_0(N)\)-optimal
7935.d8 7935b6 \([1, 1, 1, 18504, 523554]\) \(4733169839/3515625\) \(-520438672265625\) \([2]\) \(25344\) \(1.5120\)  

Rank

sage: E.rank()
 

The elliptic curves in class 7935.d have rank \(0\).

Complex multiplication

The elliptic curves in class 7935.d do not have complex multiplication.

Modular form 7935.2.a.d

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} - q^{4} - q^{5} + q^{6} + 3 q^{8} + q^{9} + q^{10} + 4 q^{11} + q^{12} - 2 q^{13} + q^{15} - q^{16} - 2 q^{17} - q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 16 & 4 & 8 & 16 & 8 \\ 2 & 1 & 2 & 8 & 2 & 4 & 8 & 4 \\ 4 & 2 & 1 & 16 & 4 & 8 & 16 & 8 \\ 16 & 8 & 16 & 1 & 4 & 2 & 4 & 8 \\ 4 & 2 & 4 & 4 & 1 & 2 & 4 & 2 \\ 8 & 4 & 8 & 2 & 2 & 1 & 2 & 4 \\ 16 & 8 & 16 & 4 & 4 & 2 & 1 & 8 \\ 8 & 4 & 8 & 8 & 2 & 4 & 8 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.