Properties

Label 7935.d
Number of curves 88
Conductor 79357935
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 7935.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7935.d1 7935b7 [1,1,1,1142651,469654508][1, 1, 1, -1142651, 469654508] 1114544804970241/4051114544804970241/405 5995453504559954535045 [2][2] 5068850688 1.85861.8586  
7935.d2 7935b5 [1,1,1,71426,7313798][1, 1, 1, -71426, 7313798] 272223782641/164025272223782641/164025 2428158669322524281586693225 [2,2][2, 2] 2534425344 1.51201.5120  
7935.d3 7935b8 [1,1,1,58201,10122788][1, 1, 1, -58201, 10122788] 147281603041/215233605-147281603041/215233605 31862298058849845-31862298058849845 [2][2] 5068850688 1.85861.8586  
7935.d4 7935b3 [1,1,1,42331,3369886][1, 1, 1, -42331, -3369886] 56667352321/1556667352321/15 22205383352220538335 [2][2] 1267212672 1.16551.1655  
7935.d5 7935b4 [1,1,1,5301,66498][1, 1, 1, -5301, 66498] 111284641/50625111284641/50625 74943168806257494316880625 [2,2][2, 2] 1267212672 1.16551.1655  
7935.d6 7935b2 [1,1,1,2656,53056][1, 1, 1, -2656, -53056] 13997521/22513997521/225 3330807502533308075025 [2,2][2, 2] 63366336 0.818900.81890  
7935.d7 7935b1 [1,1,1,11,2272][1, 1, 1, -11, -2272] 1/15-1/15 2220538335-2220538335 [2][2] 31683168 0.472320.47232 Γ0(N)\Gamma_0(N)-optimal
7935.d8 7935b6 [1,1,1,18504,523554][1, 1, 1, 18504, 523554] 4733169839/35156254733169839/3515625 520438672265625-520438672265625 [2][2] 2534425344 1.51201.5120  

Rank

sage: E.rank()
 

The elliptic curves in class 7935.d have rank 00.

Complex multiplication

The elliptic curves in class 7935.d do not have complex multiplication.

Modular form 7935.2.a.d

sage: E.q_eigenform(10)
 
qq2q3q4q5+q6+3q8+q9+q10+4q11+q122q13+q15q162q17q184q19+O(q20)q - q^{2} - q^{3} - q^{4} - q^{5} + q^{6} + 3 q^{8} + q^{9} + q^{10} + 4 q^{11} + q^{12} - 2 q^{13} + q^{15} - q^{16} - 2 q^{17} - q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(124164816821282484421164816816816142484244124284822124168164421884882481)\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 16 & 4 & 8 & 16 & 8 \\ 2 & 1 & 2 & 8 & 2 & 4 & 8 & 4 \\ 4 & 2 & 1 & 16 & 4 & 8 & 16 & 8 \\ 16 & 8 & 16 & 1 & 4 & 2 & 4 & 8 \\ 4 & 2 & 4 & 4 & 1 & 2 & 4 & 2 \\ 8 & 4 & 8 & 2 & 2 & 1 & 2 & 4 \\ 16 & 8 & 16 & 4 & 4 & 2 & 1 & 8 \\ 8 & 4 & 8 & 8 & 2 & 4 & 8 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.