Show commands:
SageMath
E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 7935.d
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
7935.d1 | 7935b7 | \([1, 1, 1, -1142651, 469654508]\) | \(1114544804970241/405\) | \(59954535045\) | \([2]\) | \(50688\) | \(1.8586\) | |
7935.d2 | 7935b5 | \([1, 1, 1, -71426, 7313798]\) | \(272223782641/164025\) | \(24281586693225\) | \([2, 2]\) | \(25344\) | \(1.5120\) | |
7935.d3 | 7935b8 | \([1, 1, 1, -58201, 10122788]\) | \(-147281603041/215233605\) | \(-31862298058849845\) | \([2]\) | \(50688\) | \(1.8586\) | |
7935.d4 | 7935b3 | \([1, 1, 1, -42331, -3369886]\) | \(56667352321/15\) | \(2220538335\) | \([2]\) | \(12672\) | \(1.1655\) | |
7935.d5 | 7935b4 | \([1, 1, 1, -5301, 66498]\) | \(111284641/50625\) | \(7494316880625\) | \([2, 2]\) | \(12672\) | \(1.1655\) | |
7935.d6 | 7935b2 | \([1, 1, 1, -2656, -53056]\) | \(13997521/225\) | \(33308075025\) | \([2, 2]\) | \(6336\) | \(0.81890\) | |
7935.d7 | 7935b1 | \([1, 1, 1, -11, -2272]\) | \(-1/15\) | \(-2220538335\) | \([2]\) | \(3168\) | \(0.47232\) | \(\Gamma_0(N)\)-optimal |
7935.d8 | 7935b6 | \([1, 1, 1, 18504, 523554]\) | \(4733169839/3515625\) | \(-520438672265625\) | \([2]\) | \(25344\) | \(1.5120\) |
Rank
sage: E.rank()
The elliptic curves in class 7935.d have rank \(0\).
Complex multiplication
The elliptic curves in class 7935.d do not have complex multiplication.Modular form 7935.2.a.d
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 16 & 4 & 8 & 16 & 8 \\ 2 & 1 & 2 & 8 & 2 & 4 & 8 & 4 \\ 4 & 2 & 1 & 16 & 4 & 8 & 16 & 8 \\ 16 & 8 & 16 & 1 & 4 & 2 & 4 & 8 \\ 4 & 2 & 4 & 4 & 1 & 2 & 4 & 2 \\ 8 & 4 & 8 & 2 & 2 & 1 & 2 & 4 \\ 16 & 8 & 16 & 4 & 4 & 2 & 1 & 8 \\ 8 & 4 & 8 & 8 & 2 & 4 & 8 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.