Properties

Label 7935b8
Conductor 79357935
Discriminant 3.186×1016-3.186\times 10^{16}
j-invariant 147281603041215233605 -\frac{147281603041}{215233605}
CM no
Rank 00
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3+x258201x+10122788y^2+xy+y=x^3+x^2-58201x+10122788 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3+x2z58201xz2+10122788z3y^2z+xyz+yz^2=x^3+x^2z-58201xz^2+10122788z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x375428523x+473420233062y^2=x^3-75428523x+473420233062 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 1, -58201, 10122788])
 
gp: E = ellinit([1, 1, 1, -58201, 10122788])
 
magma: E := EllipticCurve([1, 1, 1, -58201, 10122788]);
 
oscar: E = elliptic_curve([1, 1, 1, -58201, 10122788])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1213/4,1209/8)(-1213/4, 1209/8)0022

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  7935 7935  = 352323 \cdot 5 \cdot 23^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  31862298058849845-31862298058849845 = 13165236-1 \cdot 3^{16} \cdot 5 \cdot 23^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  147281603041215233605 -\frac{147281603041}{215233605}  = 13165152813-1 \cdot 3^{-16} \cdot 5^{-1} \cdot 5281^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.85861671644167636737701204021.8586167164416763673770120402
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.290869608477101521973635624300.29086960847710152197363562430
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.05949190234652011.0594919023465201
Szpiro ratio: σm\sigma_{m} ≈ 5.09949141824464655.0994914182446465

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.332839511640971815398588849690.33283951164097181539858884969
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 8 8  = 2122 2\cdot1\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 0.665679023281943630797177699390.66567902328194363079717769939
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

0.665679023L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.3328401.0000008220.665679023\displaystyle 0.665679023 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.332840 \cdot 1.000000 \cdot 8}{2^2} \approx 0.665679023

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   7935.2.a.d

qq2q3q4q5+q6+3q8+q9+q10+4q11+q122q13+q15q162q17q184q19+O(q20) q - q^{2} - q^{3} - q^{4} - q^{5} + q^{6} + 3 q^{8} + q^{9} + q^{10} + 4 q^{11} + q^{12} - 2 q^{13} + q^{15} - q^{16} - 2 q^{17} - q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 50688
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 22 I16I_{16} nonsplit multiplicative 1 1 16 16
55 11 I1I_{1} nonsplit multiplicative 1 1 1 1
2323 44 I0I_0^{*} additive -1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 16.48.0.134

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[23, 18, 8478, 9035], [1, 0, 32, 1], [7361, 1472, 2576, 1473], [1174, 483, 10925, 9868], [5820, 8671, 1679, 4164], [4319, 0, 0, 11039], [5, 28, 68, 381], [1381, 1472, 7636, 1473], [11009, 32, 11008, 33], [1, 32, 0, 1]]
 
GL(2,Integers(11040)).subgroup(gens)
 
Gens := [[23, 18, 8478, 9035], [1, 0, 32, 1], [7361, 1472, 2576, 1473], [1174, 483, 10925, 9868], [5820, 8671, 1679, 4164], [4319, 0, 0, 11039], [5, 28, 68, 381], [1381, 1472, 7636, 1473], [11009, 32, 11008, 33], [1, 32, 0, 1]];
 
sub<GL(2,Integers(11040))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 11040=253523 11040 = 2^{5} \cdot 3 \cdot 5 \cdot 23 , index 768768, genus 1313, and generators

(231884789035),(10321),(7361147225761473),(1174483109259868),(5820867116794164),(43190011039),(52868381),(1381147276361473),(11009321100833),(13201)\left(\begin{array}{rr} 23 & 18 \\ 8478 & 9035 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 32 & 1 \end{array}\right),\left(\begin{array}{rr} 7361 & 1472 \\ 2576 & 1473 \end{array}\right),\left(\begin{array}{rr} 1174 & 483 \\ 10925 & 9868 \end{array}\right),\left(\begin{array}{rr} 5820 & 8671 \\ 1679 & 4164 \end{array}\right),\left(\begin{array}{rr} 4319 & 0 \\ 0 & 11039 \end{array}\right),\left(\begin{array}{rr} 5 & 28 \\ 68 & 381 \end{array}\right),\left(\begin{array}{rr} 1381 & 1472 \\ 7636 & 1473 \end{array}\right),\left(\begin{array}{rr} 11009 & 32 \\ 11008 & 33 \end{array}\right),\left(\begin{array}{rr} 1 & 32 \\ 0 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[11040])K:=\Q(E[11040]) is a degree-31516419686403151641968640 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/11040Z)\GL_2(\Z/11040\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 good 22 2645=5232 2645 = 5 \cdot 23^{2}
33 nonsplit multiplicative 44 2645=5232 2645 = 5 \cdot 23^{2}
55 nonsplit multiplicative 66 1587=3232 1587 = 3 \cdot 23^{2}
2323 additive 266266 15=35 15 = 3 \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 4, 8 and 16.
Its isogeny class 7935b consists of 8 curves linked by isogenies of degrees dividing 16.

Twists

The minimal quadratic twist of this elliptic curve is 15a6, its twist by 23-23.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(5)\Q(\sqrt{-5}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(23)\Q(\sqrt{23}) Z/4Z\Z/4\Z not in database
22 Q(115)\Q(\sqrt{-115}) Z/4Z\Z/4\Z not in database
44 Q(5,23)\Q(\sqrt{-5}, \sqrt{23}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(10,23)\Q(\sqrt{10}, \sqrt{23}) Z/8Z\Z/8\Z not in database
44 Q(2,23)\Q(\sqrt{-2}, \sqrt{23}) Z/8Z\Z/8\Z not in database
88 8.0.286557184000000.6 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.1119364000000.5 Z/8Z\Z/8\Z not in database
88 8.0.11462287360000.6 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.8.73358639104000000.2 Z/16Z\Z/16\Z not in database
88 8.0.73358639104000000.4 Z/16Z\Z/16\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/16Z\Z/16\Z not in database
1616 deg 16 Z/16Z\Z/16\Z not in database
1616 16.0.5381489931190917922816000000000000.6 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 23
Reduction type ord nonsplit nonsplit add
λ\lambda-invariant(s) 4 0 0 -
μ\mu-invariant(s) 1 0 0 -

All Iwasawa λ\lambda and μ\mu-invariants for primes p3p\ge 3 of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.