Properties

Label 794.a1
Conductor 794794
Discriminant 1588-1588
j-invariant 17715611588 -\frac{1771561}{1588}
CM no
Rank 22
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x33x+2y^2+xy+y=x^3-3x+2 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x33xz2+2z3y^2z+xyz+yz^2=x^3-3xz^2+2z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x33267x+114750y^2=x^3-3267x+114750 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 1, -3, 2])
 
gp: E = ellinit([1, 0, 1, -3, 2])
 
magma: E := EllipticCurve([1, 0, 1, -3, 2]);
 
oscar: E = elliptic_curve([1, 0, 1, -3, 2])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ\Z \oplus \Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1,0)(1, 0)0.271215160179815231234015472990.27121516017981523123401547299\infty
(1,2)(-1, 2)0.566216994104039777411814217710.56621699410403977741181421771\infty

Integral points

(2,1) \left(-2, 1\right) , (2,0) \left(-2, 0\right) , (1,2) \left(-1, 2\right) , (1,2) \left(-1, -2\right) , (0,1) \left(0, 1\right) , (0,2) \left(0, -2\right) , (1,0) \left(1, 0\right) , (1,2) \left(1, -2\right) , (2,1) \left(2, 1\right) , (2,4) \left(2, -4\right) , (5,8) \left(5, 8\right) , (5,14) \left(5, -14\right) , (9,22) \left(9, 22\right) , (9,32) \left(9, -32\right) , (13,40) \left(13, 40\right) , (13,54) \left(13, -54\right) , (76,625) \left(76, 625\right) , (76,702) \left(76, -702\right) , (320,5566) \left(320, 5566\right) , (320,5887) \left(320, -5887\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  794 794  = 23972 \cdot 397
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  1588-1588 = 122397-1 \cdot 2^{2} \cdot 397
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  17715611588 -\frac{1771561}{1588}  = 1221163971-1 \cdot 2^{-2} \cdot 11^{6} \cdot 397^{-1}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.68884326727709391527240458446-0.68884326727709391527240458446
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.68884326727709391527240458446-0.68884326727709391527240458446
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.04835797532713041.0483579753271304
Szpiro ratio: σm\sigma_{m} ≈ 2.29487234234077062.2948723423407706

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 2 2
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 2 2
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.149049991080622738644474967890.14904999108062273864447496789
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 4.34264337335914562115166661714.3426433733591456211516666171
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 2 2  = 21 2\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(2)(E,1)/2! L^{(2)}(E,1)/2! ≈ 1.29454191213101219263368168971.2945419121310121926336816897
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.294541912L(2)(E,1)/2!=?#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor214.3426430.1490502121.294541912\displaystyle 1.294541912 \approx L^{(2)}(E,1)/2! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 4.342643 \cdot 0.149050 \cdot 2}{1^2} \approx 1.294541912

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   794.2.a.a

qq22q3+q44q5+2q63q7q8+q9+4q102q124q13+3q14+8q15+q168q17q186q19+O(q20) q - q^{2} - 2 q^{3} + q^{4} - 4 q^{5} + 2 q^{6} - 3 q^{7} - q^{8} + q^{9} + 4 q^{10} - 2 q^{12} - 4 q^{13} + 3 q^{14} + 8 q^{15} + q^{16} - 8 q^{17} - q^{18} - 6 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 88
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I2I_{2} nonsplit multiplicative 1 1 2 2
397397 11 I1I_{1} split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 2, 1], [1, 2, 0, 1], [1, 1, 1587, 0], [1587, 2, 1586, 3], [795, 2, 795, 3], [5, 2, 5, 3]]
 
GL(2,Integers(1588)).subgroup(gens)
 
Gens := [[1, 0, 2, 1], [1, 2, 0, 1], [1, 1, 1587, 0], [1587, 2, 1586, 3], [795, 2, 795, 3], [5, 2, 5, 3]];
 
sub<GL(2,Integers(1588))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1588=22397 1588 = 2^{2} \cdot 397 , index 22, genus 00, and generators

(1021),(1201),(1115870),(1587215863),(79527953),(5253)\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 1587 & 0 \end{array}\right),\left(\begin{array}{rr} 1587 & 2 \\ 1586 & 3 \end{array}\right),\left(\begin{array}{rr} 795 & 2 \\ 795 & 3 \end{array}\right),\left(\begin{array}{rr} 5 & 2 \\ 5 & 3 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1588])K:=\Q(E[1588]) is a degree-11893377070081189337707008 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1588Z)\GL_2(\Z/1588\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 397 397
397397 split multiplicative 398398 2 2

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 794.a consists of this curve only.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.1588.1 Z/2Z\Z/2\Z not in database
66 6.0.4004529472.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.869222166059952.6 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 397
Reduction type nonsplit ord ord ord ss ord ord ord ord ord ord ord ss ord ord split
λ\lambda-invariant(s) 7 10 2 2 2,2 2 2 2 2 2 2 2 2,2 2 2 3
μ\mu-invariant(s) 0 0 0 0 0,0 0 0 0 0 0 0 0 0,0 0 0 0

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.