Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 80.b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
80.b1 | 80b4 | \([0, -1, 0, -41, 116]\) | \(488095744/125\) | \(2000\) | \([2]\) | \(24\) | \(-0.38064\) | |
80.b2 | 80b3 | \([0, -1, 0, -36, 140]\) | \(-20720464/15625\) | \(-4000000\) | \([2]\) | \(12\) | \(-0.034070\) | |
80.b3 | 80b2 | \([0, -1, 0, -1, 0]\) | \(16384/5\) | \(80\) | \([2]\) | \(8\) | \(-0.92995\) | |
80.b4 | 80b1 | \([0, -1, 0, 4, -4]\) | \(21296/25\) | \(-6400\) | \([2]\) | \(4\) | \(-0.58338\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 80.b have rank \(0\).
Complex multiplication
The elliptic curves in class 80.b do not have complex multiplication.Modular form 80.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.