Properties

Label 80.b
Number of curves $4$
Conductor $80$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 80.b have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 80.b do not have complex multiplication.

Modular form 80.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} - q^{5} - 2 q^{7} + q^{9} + 2 q^{13} - 2 q^{15} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 80.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
80.b1 80b4 \([0, -1, 0, -41, 116]\) \(488095744/125\) \(2000\) \([2]\) \(24\) \(-0.38064\)  
80.b2 80b3 \([0, -1, 0, -36, 140]\) \(-20720464/15625\) \(-4000000\) \([2]\) \(12\) \(-0.034070\)  
80.b3 80b2 \([0, -1, 0, -1, 0]\) \(16384/5\) \(80\) \([2]\) \(8\) \(-0.92995\)  
80.b4 80b1 \([0, -1, 0, 4, -4]\) \(21296/25\) \(-6400\) \([2]\) \(4\) \(-0.58338\) \(\Gamma_0(N)\)-optimal