Properties

Label 80.b
Number of curves 44
Conductor 8080
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 80.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
80.b1 80b4 [0,1,0,41,116][0, -1, 0, -41, 116] 488095744/125488095744/125 20002000 [2][2] 2424 0.38064-0.38064  
80.b2 80b3 [0,1,0,36,140][0, -1, 0, -36, 140] 20720464/15625-20720464/15625 4000000-4000000 [2][2] 1212 0.034070-0.034070  
80.b3 80b2 [0,1,0,1,0][0, -1, 0, -1, 0] 16384/516384/5 8080 [2][2] 88 0.92995-0.92995  
80.b4 80b1 [0,1,0,4,4][0, -1, 0, 4, -4] 21296/2521296/25 6400-6400 [2][2] 44 0.58338-0.58338 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 80.b have rank 00.

Complex multiplication

The elliptic curves in class 80.b do not have complex multiplication.

Modular form 80.2.a.b

sage: E.q_eigenform(10)
 
q+2q3q52q7+q9+2q132q156q17+4q19+O(q20)q + 2 q^{3} - q^{5} - 2 q^{7} + q^{9} + 2 q^{13} - 2 q^{15} - 6 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1236216336126321)\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.