Properties

Label 8100.f
Number of curves 22
Conductor 81008100
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 8100.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8100.f1 8100e1 [0,0,0,975,11750][0, 0, 0, -975, 11750] 316368-316368 324000000-324000000 [][] 38883888 0.500160.50016 Γ0(N)\Gamma_0(N)-optimal
8100.f2 8100e2 [0,0,0,2025,60750][0, 0, 0, 2025, 60750] 432432 2125764000000-2125764000000 [][] 1166411664 1.04951.0495  

Rank

sage: E.rank()
 

The elliptic curves in class 8100.f have rank 00.

Complex multiplication

The elliptic curves in class 8100.f do not have complex multiplication.

Modular form 8100.2.a.f

sage: E.q_eigenform(10)
 
q2q7+6q115q133q17+2q19+O(q20)q - 2 q^{7} + 6 q^{11} - 5 q^{13} - 3 q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.