Properties

Label 8100.f
Number of curves $2$
Conductor $8100$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 8100.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8100.f1 8100e1 \([0, 0, 0, -975, 11750]\) \(-316368\) \(-324000000\) \([]\) \(3888\) \(0.50016\) \(\Gamma_0(N)\)-optimal
8100.f2 8100e2 \([0, 0, 0, 2025, 60750]\) \(432\) \(-2125764000000\) \([]\) \(11664\) \(1.0495\)  

Rank

sage: E.rank()
 

The elliptic curves in class 8100.f have rank \(0\).

Complex multiplication

The elliptic curves in class 8100.f do not have complex multiplication.

Modular form 8100.2.a.f

sage: E.q_eigenform(10)
 
\(q - 2 q^{7} + 6 q^{11} - 5 q^{13} - 3 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.