Show commands:
SageMath
E = EllipticCurve("m1")
E.isogeny_class()
Elliptic curves in class 8100.m
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
8100.m1 | 8100h2 | \([0, 0, 0, -16200, -121500]\) | \(221184/125\) | \(265720500000000\) | \([]\) | \(31104\) | \(1.4578\) | |
8100.m2 | 8100h1 | \([0, 0, 0, -10200, 396500]\) | \(362225664/5\) | \(1620000000\) | \([]\) | \(10368\) | \(0.90849\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 8100.m have rank \(0\).
Complex multiplication
The elliptic curves in class 8100.m do not have complex multiplication.Modular form 8100.2.a.m
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.