Properties

Label 8100e1
Conductor 81008100
Discriminant 324000000-324000000
j-invariant 316368 -316368
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3975x+11750y^2=x^3-975x+11750 Copy content Toggle raw display (homogenize, simplify)
y2z=x3975xz2+11750z3y^2z=x^3-975xz^2+11750z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3975x+11750y^2=x^3-975x+11750 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -975, 11750])
 
gp: E = ellinit([0, 0, 0, -975, 11750])
 
magma: E := EllipticCurve([0, 0, 0, -975, 11750]);
 
oscar: E = elliptic_curve([0, 0, 0, -975, 11750])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  8100 8100  = 2234522^{2} \cdot 3^{4} \cdot 5^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  324000000-324000000 = 1283456-1 \cdot 2^{8} \cdot 3^{4} \cdot 5^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  316368 -316368  = 12432133-1 \cdot 2^{4} \cdot 3^{2} \cdot 13^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.500159938830384968726244910670.50015993883038496872624491067
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.1328612339826653219840379159-1.1328612339826653219840379159
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.9382758514908840.938275851490884
Szpiro ratio: σm\sigma_{m} ≈ 3.5853030395377283.585303039537728

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 1.72210801616673346143022080911.7221080161667334614302208091
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 1 1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.72210801616673346143022080911.7221080161667334614302208091
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.722108016L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.7221081.0000001121.722108016\displaystyle 1.722108016 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.722108 \cdot 1.000000 \cdot 1}{1^2} \approx 1.722108016

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   8100.2.a.f

q2q7+6q115q133q17+2q19+O(q20) q - 2 q^{7} + 6 q^{11} - 5 q^{13} - 3 q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 3888
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 IVIV^{*} additive -1 2 8 0
33 11 IIII additive 1 4 4 0
55 11 I0I_0^{*} additive 1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2G 4.2.0.1
33 3B 3.4.0.1
55 5S4 5.5.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[119, 108, 0, 23], [61, 105, 90, 61], [1, 0, 60, 1], [61, 66, 78, 49], [88, 69, 27, 103], [61, 60, 60, 61], [81, 100, 40, 81], [109, 42, 66, 97], [1, 60, 0, 1], [61, 60, 90, 1], [101, 20, 100, 21]]
 
GL(2,Integers(120)).subgroup(gens)
 
Gens := [[119, 108, 0, 23], [61, 105, 90, 61], [1, 0, 60, 1], [61, 66, 78, 49], [88, 69, 27, 103], [61, 60, 60, 61], [81, 100, 40, 81], [109, 42, 66, 97], [1, 60, 0, 1], [61, 60, 90, 1], [101, 20, 100, 21]];
 
sub<GL(2,Integers(120))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 120=2335 120 = 2^{3} \cdot 3 \cdot 5 , index 160160, genus 44, and generators

(119108023),(611059061),(10601),(61667849),(886927103),(61606061),(811004081),(109426697),(16001),(6160901),(1012010021)\left(\begin{array}{rr} 119 & 108 \\ 0 & 23 \end{array}\right),\left(\begin{array}{rr} 61 & 105 \\ 90 & 61 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 60 & 1 \end{array}\right),\left(\begin{array}{rr} 61 & 66 \\ 78 & 49 \end{array}\right),\left(\begin{array}{rr} 88 & 69 \\ 27 & 103 \end{array}\right),\left(\begin{array}{rr} 61 & 60 \\ 60 & 61 \end{array}\right),\left(\begin{array}{rr} 81 & 100 \\ 40 & 81 \end{array}\right),\left(\begin{array}{rr} 109 & 42 \\ 66 & 97 \end{array}\right),\left(\begin{array}{rr} 1 & 60 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 61 & 60 \\ 90 & 1 \end{array}\right),\left(\begin{array}{rr} 101 & 20 \\ 100 & 21 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[120])K:=\Q(E[120]) is a degree-221184221184 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/120Z)\GL_2(\Z/120\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 2025=3452 2025 = 3^{4} \cdot 5^{2}
33 additive 88 100=2252 100 = 2^{2} \cdot 5^{2}
55 additive 1414 324=2234 324 = 2^{2} \cdot 3^{4}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 8100e consists of 2 curves linked by isogenies of degree 3.

Twists

The minimal quadratic twist of this elliptic curve is 324d1, its twist by 55.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(5)\Q(\sqrt{5}) Z/3Z\Z/3\Z not in database
33 3.1.324.1 Z/2Z\Z/2\Z not in database
66 6.0.419904.2 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.0.354294000.4 Z/3Z\Z/3\Z not in database
66 6.2.13122000.1 Z/6Z\Z/6\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
1212 12.0.2754990144000000.2 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1818 18.6.10806813741383936712000000000.4 Z/9Z\Z/9\Z not in database
1818 18.0.8299632953382863394816000000000.2 Z/6Z\Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add add add ord ord ord ord ord ord ord ord ord ord ord ss
λ\lambda-invariant(s) - - - 0 0 0 0 0 0 0 0 0 0 0 0,0
μ\mu-invariant(s) - - - 0 0 0 0 0 0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.