Properties

Label 8112.s
Number of curves $4$
Conductor $8112$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("s1")
 
E.isogeny_class()
 

Elliptic curves in class 8112.s

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8112.s1 8112bh4 \([0, 1, 0, -187984, 31307732]\) \(37159393753/1053\) \(20818451976192\) \([4]\) \(43008\) \(1.6573\)  
8112.s2 8112bh3 \([0, 1, 0, -52784, -4244460]\) \(822656953/85683\) \(1694005147840512\) \([2]\) \(43008\) \(1.6573\)  
8112.s3 8112bh2 \([0, 1, 0, -12224, 444276]\) \(10218313/1521\) \(30071097298944\) \([2, 2]\) \(21504\) \(1.3107\)  
8112.s4 8112bh1 \([0, 1, 0, 1296, 38676]\) \(12167/39\) \(-771053776896\) \([2]\) \(10752\) \(0.96411\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 8112.s have rank \(1\).

Complex multiplication

The elliptic curves in class 8112.s do not have complex multiplication.

Modular form 8112.2.a.s

sage: E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} - 4 q^{7} + q^{9} + 4 q^{11} - 2 q^{15} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.