Properties

Label 81225bi
Number of curves 22
Conductor 8122581225
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bi1")
 
E.isogeny_class()
 

Elliptic curves in class 81225bi

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
81225.bq2 81225bi1 [0,0,1,1597425,887597469][0, 0, 1, 1597425, -887597469] 841232384/1121931841232384/1121931 601222614976840921875-601222614976840921875 [][] 48384004838400 2.67292.6729 Γ0(N)\Gamma_0(N)-optimal
81225.bq1 81225bi2 [0,0,1,356604825,2591969158719][0, 0, 1, -356604825, -2591969158719] 9358714467168256/22284891-9358714467168256/22284891 11942071697362732171875-11942071697362732171875 [][] 2419200024192000 3.47773.4777  

Rank

sage: E.rank()
 

The elliptic curves in class 81225bi have rank 11.

Complex multiplication

The elliptic curves in class 81225bi do not have complex multiplication.

Modular form 81225.2.a.bi

sage: E.q_eigenform(10)
 
q+2q2+2q43q7+3q116q136q144q16+3q17+O(q20)q + 2 q^{2} + 2 q^{4} - 3 q^{7} + 3 q^{11} - 6 q^{13} - 6 q^{14} - 4 q^{16} + 3 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1551)\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.