Properties

Label 81225bq
Number of curves $2$
Conductor $81225$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bq1")
 
E.isogeny_class()
 

Elliptic curves in class 81225bq

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
81225.n2 81225bq1 \([1, -1, 1, 1015, 433792]\) \(27/19\) \(-81454062216375\) \([2]\) \(184320\) \(1.3483\) \(\Gamma_0(N)\)-optimal
81225.n1 81225bq2 \([1, -1, 1, -80210, 8556292]\) \(13312053/361\) \(1547627182111125\) \([2]\) \(368640\) \(1.6949\)  

Rank

sage: E.rank()
 

The elliptic curves in class 81225bq have rank \(0\).

Complex multiplication

The elliptic curves in class 81225bq do not have complex multiplication.

Modular form 81225.2.a.bq

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{4} + 2 q^{7} + 3 q^{8} + 4 q^{11} + 2 q^{13} - 2 q^{14} - q^{16} - 4 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.