Show commands:
SageMath
E = EllipticCurve("bq1")
E.isogeny_class()
Elliptic curves in class 81225bq
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
81225.n2 | 81225bq1 | \([1, -1, 1, 1015, 433792]\) | \(27/19\) | \(-81454062216375\) | \([2]\) | \(184320\) | \(1.3483\) | \(\Gamma_0(N)\)-optimal |
81225.n1 | 81225bq2 | \([1, -1, 1, -80210, 8556292]\) | \(13312053/361\) | \(1547627182111125\) | \([2]\) | \(368640\) | \(1.6949\) |
Rank
sage: E.rank()
The elliptic curves in class 81225bq have rank \(0\).
Complex multiplication
The elliptic curves in class 81225bq do not have complex multiplication.Modular form 81225.2.a.bq
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.