Properties

Label 816.g
Number of curves $2$
Conductor $816$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("g1")
 
E.isogeny_class()
 

Elliptic curves in class 816.g

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
816.g1 816f2 \([0, -1, 0, -949, 11581]\) \(-23100424192/14739\) \(-60370944\) \([]\) \(432\) \(0.43392\)  
816.g2 816f1 \([0, -1, 0, 11, 61]\) \(32768/459\) \(-1880064\) \([]\) \(144\) \(-0.11538\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 816.g have rank \(0\).

Complex multiplication

The elliptic curves in class 816.g do not have complex multiplication.

Modular form 816.2.a.g

sage: E.q_eigenform(10)
 
\(q - q^{3} + 3 q^{5} + 4 q^{7} + q^{9} + 3 q^{11} - q^{13} - 3 q^{15} - q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.