sage:E = EllipticCurve("g1")
E.isogeny_class()
Elliptic curves in class 816.g
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
816.g1 |
816f2 |
[0,−1,0,−949,11581] |
−23100424192/14739 |
−60370944 |
[] |
432 |
0.43392
|
|
816.g2 |
816f1 |
[0,−1,0,11,61] |
32768/459 |
−1880064 |
[] |
144 |
−0.11538
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 816.g have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1+T |
17 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1−3T+5T2 |
1.5.ad
|
7 |
1−4T+7T2 |
1.7.ae
|
11 |
1−3T+11T2 |
1.11.ad
|
13 |
1+T+13T2 |
1.13.b
|
19 |
1−T+19T2 |
1.19.ab
|
23 |
1+9T+23T2 |
1.23.j
|
29 |
1−6T+29T2 |
1.29.ag
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 816.g do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1331)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.