E = EllipticCurve("im1")
E.isogeny_class()
Elliptic curves in class 81600im
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
81600.hj3 |
81600im1 |
[0,1,0,−95133,−9290637] |
5951163357184/1129312125 |
18068994000000000 |
[2] |
663552 |
1.8370
|
Γ0(N)-optimal |
81600.hj2 |
81600im2 |
[0,1,0,−459633,111358863] |
41948679809104/3291890625 |
842724000000000000 |
[2,2] |
1327104 |
2.1836
|
|
81600.hj4 |
81600im3 |
[0,1,0,458367,501508863] |
10400706415004/112060546875 |
−114750000000000000000 |
[2] |
2654208 |
2.5301
|
|
81600.hj1 |
81600im4 |
[0,1,0,−7209633,7448608863] |
40472803590982276/281883375 |
288648576000000000 |
[2] |
2654208 |
2.5301
|
|
The elliptic curves in class 81600im have
rank 0.
The elliptic curves in class 81600im do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.