Properties

Label 81600im
Number of curves $4$
Conductor $81600$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("im1")
 
E.isogeny_class()
 

Elliptic curves in class 81600im

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
81600.hj3 81600im1 \([0, 1, 0, -95133, -9290637]\) \(5951163357184/1129312125\) \(18068994000000000\) \([2]\) \(663552\) \(1.8370\) \(\Gamma_0(N)\)-optimal
81600.hj2 81600im2 \([0, 1, 0, -459633, 111358863]\) \(41948679809104/3291890625\) \(842724000000000000\) \([2, 2]\) \(1327104\) \(2.1836\)  
81600.hj4 81600im3 \([0, 1, 0, 458367, 501508863]\) \(10400706415004/112060546875\) \(-114750000000000000000\) \([2]\) \(2654208\) \(2.5301\)  
81600.hj1 81600im4 \([0, 1, 0, -7209633, 7448608863]\) \(40472803590982276/281883375\) \(288648576000000000\) \([2]\) \(2654208\) \(2.5301\)  

Rank

sage: E.rank()
 

The elliptic curves in class 81600im have rank \(0\).

Complex multiplication

The elliptic curves in class 81600im do not have complex multiplication.

Modular form 81600.2.a.im

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{9} - 4 q^{11} + 6 q^{13} + q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.