Properties

Label 81600im
Number of curves 44
Conductor 8160081600
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("im1")
 
E.isogeny_class()
 

Elliptic curves in class 81600im

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
81600.hj3 81600im1 [0,1,0,95133,9290637][0, 1, 0, -95133, -9290637] 5951163357184/11293121255951163357184/1129312125 1806899400000000018068994000000000 [2][2] 663552663552 1.83701.8370 Γ0(N)\Gamma_0(N)-optimal
81600.hj2 81600im2 [0,1,0,459633,111358863][0, 1, 0, -459633, 111358863] 41948679809104/329189062541948679809104/3291890625 842724000000000000842724000000000000 [2,2][2, 2] 13271041327104 2.18362.1836  
81600.hj4 81600im3 [0,1,0,458367,501508863][0, 1, 0, 458367, 501508863] 10400706415004/11206054687510400706415004/112060546875 114750000000000000000-114750000000000000000 [2][2] 26542082654208 2.53012.5301  
81600.hj1 81600im4 [0,1,0,7209633,7448608863][0, 1, 0, -7209633, 7448608863] 40472803590982276/28188337540472803590982276/281883375 288648576000000000288648576000000000 [2][2] 26542082654208 2.53012.5301  

Rank

sage: E.rank()
 

The elliptic curves in class 81600im have rank 00.

Complex multiplication

The elliptic curves in class 81600im do not have complex multiplication.

Modular form 81600.2.a.im

sage: E.q_eigenform(10)
 
q+q3+q94q11+6q13+q17+4q19+O(q20)q + q^{3} + q^{9} - 4 q^{11} + 6 q^{13} + q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.