Properties

Label 82110.o
Number of curves $4$
Conductor $82110$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("o1")
 
E.isogeny_class()
 

Elliptic curves in class 82110.o

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
82110.o1 82110q4 \([1, 1, 0, -5686712, -5222003136]\) \(20337966805091038553406601/24168591095040\) \(24168591095040\) \([2]\) \(2031616\) \(2.2809\)  
82110.o2 82110q2 \([1, 1, 0, -355512, -81660096]\) \(4969222174347906673801/5412627298713600\) \(5412627298713600\) \([2, 2]\) \(1015808\) \(1.9344\)  
82110.o3 82110q3 \([1, 1, 0, -267192, -123117504]\) \(-2109582937351555472521/5315560665303840000\) \(-5315560665303840000\) \([4]\) \(2031616\) \(2.2809\)  
82110.o4 82110q1 \([1, 1, 0, -27832, -592064]\) \(2384412229264108681/1234309176360960\) \(1234309176360960\) \([2]\) \(507904\) \(1.5878\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 82110.o have rank \(0\).

Complex multiplication

The elliptic curves in class 82110.o do not have complex multiplication.

Modular form 82110.2.a.o

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} + q^{7} - q^{8} + q^{9} - q^{10} - q^{12} - 2 q^{13} - q^{14} - q^{15} + q^{16} + q^{17} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.