E = EllipticCurve("bp1")
E.isogeny_class()
Elliptic curves in class 82110.bp
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
82110.bp1 |
82110bq4 |
[1,0,0,−180201,17385795] |
647135840104522706449/243695383641033030 |
243695383641033030 |
[2] |
1376256 |
2.0358
|
|
82110.bp2 |
82110bq2 |
[1,0,0,−79051,−8366995] |
54631881784005100849/1420422278480100 |
1420422278480100 |
[2,2] |
688128 |
1.6893
|
|
82110.bp3 |
82110bq1 |
[1,0,0,−78551,−8480295] |
53601780056497828849/37688490000 |
37688490000 |
[2] |
344064 |
1.3427
|
Γ0(N)-optimal |
82110.bp4 |
82110bq3 |
[1,0,0,14099,−26866585] |
309946487145592751/312030025063117830 |
−312030025063117830 |
[2] |
1376256 |
2.0358
|
|
The elliptic curves in class 82110.bp have
rank 0.
The elliptic curves in class 82110.bp do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.