Properties

Label 82110.bp
Number of curves $4$
Conductor $82110$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bp1")
 
E.isogeny_class()
 

Elliptic curves in class 82110.bp

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
82110.bp1 82110bq4 \([1, 0, 0, -180201, 17385795]\) \(647135840104522706449/243695383641033030\) \(243695383641033030\) \([2]\) \(1376256\) \(2.0358\)  
82110.bp2 82110bq2 \([1, 0, 0, -79051, -8366995]\) \(54631881784005100849/1420422278480100\) \(1420422278480100\) \([2, 2]\) \(688128\) \(1.6893\)  
82110.bp3 82110bq1 \([1, 0, 0, -78551, -8480295]\) \(53601780056497828849/37688490000\) \(37688490000\) \([2]\) \(344064\) \(1.3427\) \(\Gamma_0(N)\)-optimal
82110.bp4 82110bq3 \([1, 0, 0, 14099, -26866585]\) \(309946487145592751/312030025063117830\) \(-312030025063117830\) \([2]\) \(1376256\) \(2.0358\)  

Rank

sage: E.rank()
 

The elliptic curves in class 82110.bp have rank \(0\).

Complex multiplication

The elliptic curves in class 82110.bp do not have complex multiplication.

Modular form 82110.2.a.bp

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{7} + q^{8} + q^{9} - q^{10} - 4 q^{11} + q^{12} + 6 q^{13} + q^{14} - q^{15} + q^{16} - q^{17} + q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.