Properties

Label 82110.bp
Number of curves 44
Conductor 8211082110
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bp1")
 
E.isogeny_class()
 

Elliptic curves in class 82110.bp

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
82110.bp1 82110bq4 [1,0,0,180201,17385795][1, 0, 0, -180201, 17385795] 647135840104522706449/243695383641033030647135840104522706449/243695383641033030 243695383641033030243695383641033030 [2][2] 13762561376256 2.03582.0358  
82110.bp2 82110bq2 [1,0,0,79051,8366995][1, 0, 0, -79051, -8366995] 54631881784005100849/142042227848010054631881784005100849/1420422278480100 14204222784801001420422278480100 [2,2][2, 2] 688128688128 1.68931.6893  
82110.bp3 82110bq1 [1,0,0,78551,8480295][1, 0, 0, -78551, -8480295] 53601780056497828849/3768849000053601780056497828849/37688490000 3768849000037688490000 [2][2] 344064344064 1.34271.3427 Γ0(N)\Gamma_0(N)-optimal
82110.bp4 82110bq3 [1,0,0,14099,26866585][1, 0, 0, 14099, -26866585] 309946487145592751/312030025063117830309946487145592751/312030025063117830 312030025063117830-312030025063117830 [2][2] 13762561376256 2.03582.0358  

Rank

sage: E.rank()
 

The elliptic curves in class 82110.bp have rank 00.

Complex multiplication

The elliptic curves in class 82110.bp do not have complex multiplication.

Modular form 82110.2.a.bp

sage: E.q_eigenform(10)
 
q+q2+q3+q4q5+q6+q7+q8+q9q104q11+q12+6q13+q14q15+q16q17+q18+4q19+O(q20)q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{7} + q^{8} + q^{9} - q^{10} - 4 q^{11} + q^{12} + 6 q^{13} + q^{14} - q^{15} + q^{16} - q^{17} + q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.