Properties

Label 82110.br
Number of curves $4$
Conductor $82110$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("br1")
 
E.isogeny_class()
 

Elliptic curves in class 82110.br

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
82110.br1 82110br4 \([1, 0, 0, -1545324081, 23381332267545]\) \(408114879566277798087624787060369/6337051947007316223570000\) \(6337051947007316223570000\) \([2]\) \(42270720\) \(3.8938\)  
82110.br2 82110br2 \([1, 0, 0, -99474081, 342290857545]\) \(108856287578506661479816660369/12378655769859332100000000\) \(12378655769859332100000000\) \([2, 2]\) \(21135360\) \(3.5473\)  
82110.br3 82110br1 \([1, 0, 0, -23891361, -39265829559]\) \(1508156412264989366576166289/206783323792550830080000\) \(206783323792550830080000\) \([2]\) \(10567680\) \(3.2007\) \(\Gamma_0(N)\)-optimal
82110.br4 82110br3 \([1, 0, 0, 137052399, 1723179753081]\) \(284697489670284592032089987951/1447497023154543457031250000\) \(-1447497023154543457031250000\) \([2]\) \(42270720\) \(3.8938\)  

Rank

sage: E.rank()
 

The elliptic curves in class 82110.br have rank \(1\).

Complex multiplication

The elliptic curves in class 82110.br do not have complex multiplication.

Modular form 82110.2.a.br

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{7} + q^{8} + q^{9} - q^{10} + 4 q^{11} + q^{12} - 2 q^{13} + q^{14} - q^{15} + q^{16} - q^{17} + q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.