Properties

Label 82110.br
Number of curves 44
Conductor 8211082110
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("br1")
 
E.isogeny_class()
 

Elliptic curves in class 82110.br

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
82110.br1 82110br4 [1,0,0,1545324081,23381332267545][1, 0, 0, -1545324081, 23381332267545] 408114879566277798087624787060369/6337051947007316223570000408114879566277798087624787060369/6337051947007316223570000 63370519470073162235700006337051947007316223570000 [2][2] 4227072042270720 3.89383.8938  
82110.br2 82110br2 [1,0,0,99474081,342290857545][1, 0, 0, -99474081, 342290857545] 108856287578506661479816660369/12378655769859332100000000108856287578506661479816660369/12378655769859332100000000 1237865576985933210000000012378655769859332100000000 [2,2][2, 2] 2113536021135360 3.54733.5473  
82110.br3 82110br1 [1,0,0,23891361,39265829559][1, 0, 0, -23891361, -39265829559] 1508156412264989366576166289/2067833237925508300800001508156412264989366576166289/206783323792550830080000 206783323792550830080000206783323792550830080000 [2][2] 1056768010567680 3.20073.2007 Γ0(N)\Gamma_0(N)-optimal
82110.br4 82110br3 [1,0,0,137052399,1723179753081][1, 0, 0, 137052399, 1723179753081] 284697489670284592032089987951/1447497023154543457031250000284697489670284592032089987951/1447497023154543457031250000 1447497023154543457031250000-1447497023154543457031250000 [2][2] 4227072042270720 3.89383.8938  

Rank

sage: E.rank()
 

The elliptic curves in class 82110.br have rank 11.

Complex multiplication

The elliptic curves in class 82110.br do not have complex multiplication.

Modular form 82110.2.a.br

sage: E.q_eigenform(10)
 
q+q2+q3+q4q5+q6+q7+q8+q9q10+4q11+q122q13+q14q15+q16q17+q184q19+O(q20)q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{7} + q^{8} + q^{9} - q^{10} + 4 q^{11} + q^{12} - 2 q^{13} + q^{14} - q^{15} + q^{16} - q^{17} + q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.