E = EllipticCurve("br1")
E.isogeny_class()
Elliptic curves in class 82110.br
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
82110.br1 |
82110br4 |
[1,0,0,−1545324081,23381332267545] |
408114879566277798087624787060369/6337051947007316223570000 |
6337051947007316223570000 |
[2] |
42270720 |
3.8938
|
|
82110.br2 |
82110br2 |
[1,0,0,−99474081,342290857545] |
108856287578506661479816660369/12378655769859332100000000 |
12378655769859332100000000 |
[2,2] |
21135360 |
3.5473
|
|
82110.br3 |
82110br1 |
[1,0,0,−23891361,−39265829559] |
1508156412264989366576166289/206783323792550830080000 |
206783323792550830080000 |
[2] |
10567680 |
3.2007
|
Γ0(N)-optimal |
82110.br4 |
82110br3 |
[1,0,0,137052399,1723179753081] |
284697489670284592032089987951/1447497023154543457031250000 |
−1447497023154543457031250000 |
[2] |
42270720 |
3.8938
|
|
The elliptic curves in class 82110.br have
rank 1.
The elliptic curves in class 82110.br do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.