Show commands:
SageMath
E = EllipticCurve("bv1")
E.isogeny_class()
Elliptic curves in class 82110.bv
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
82110.bv1 | 82110bv2 | \([1, 0, 0, -29285, -1930815]\) | \(2777540013143436241/925168184640\) | \(925168184640\) | \([2]\) | \(245760\) | \(1.2689\) | |
82110.bv2 | 82110bv1 | \([1, 0, 0, -2085, -21375]\) | \(1002431968831441/385930137600\) | \(385930137600\) | \([2]\) | \(122880\) | \(0.92231\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 82110.bv have rank \(1\).
Complex multiplication
The elliptic curves in class 82110.bv do not have complex multiplication.Modular form 82110.2.a.bv
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.