Properties

Label 82110.bv
Number of curves 22
Conductor 8211082110
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bv1")
 
E.isogeny_class()
 

Elliptic curves in class 82110.bv

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
82110.bv1 82110bv2 [1,0,0,29285,1930815][1, 0, 0, -29285, -1930815] 2777540013143436241/9251681846402777540013143436241/925168184640 925168184640925168184640 [2][2] 245760245760 1.26891.2689  
82110.bv2 82110bv1 [1,0,0,2085,21375][1, 0, 0, -2085, -21375] 1002431968831441/3859301376001002431968831441/385930137600 385930137600385930137600 [2][2] 122880122880 0.922310.92231 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 82110.bv have rank 11.

Complex multiplication

The elliptic curves in class 82110.bv do not have complex multiplication.

Modular form 82110.2.a.bv

sage: E.q_eigenform(10)
 
q+q2+q3+q4+q5+q6+q7+q8+q9+q102q11+q124q13+q14+q15+q16q17+q18+4q19+O(q20)q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} + q^{7} + q^{8} + q^{9} + q^{10} - 2 q^{11} + q^{12} - 4 q^{13} + q^{14} + q^{15} + q^{16} - q^{17} + q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.