E = EllipticCurve("bz1")
E.isogeny_class()
Elliptic curves in class 82110.bz
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
82110.bz1 |
82110bx4 |
[1,0,0,−275345,−55609533] |
2308635631424282766481/1192703786215830 |
1192703786215830 |
[2] |
1032192 |
1.8440
|
|
82110.bz2 |
82110bx3 |
[1,0,0,−157045,23564807] |
428347490215633667281/7730096413484970 |
7730096413484970 |
[2] |
1032192 |
1.8440
|
|
82110.bz3 |
82110bx2 |
[1,0,0,−20195,−548163] |
910870482653192881/398111434452900 |
398111434452900 |
[2,2] |
516096 |
1.4975
|
|
82110.bz4 |
82110bx1 |
[1,0,0,4305,−63063] |
8823418415295119/6843786390000 |
−6843786390000 |
[4] |
258048 |
1.1509
|
Γ0(N)-optimal |
The elliptic curves in class 82110.bz have
rank 0.
The elliptic curves in class 82110.bz do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.