Properties

Label 82110.bz
Number of curves $4$
Conductor $82110$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bz1")
 
E.isogeny_class()
 

Elliptic curves in class 82110.bz

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
82110.bz1 82110bx4 \([1, 0, 0, -275345, -55609533]\) \(2308635631424282766481/1192703786215830\) \(1192703786215830\) \([2]\) \(1032192\) \(1.8440\)  
82110.bz2 82110bx3 \([1, 0, 0, -157045, 23564807]\) \(428347490215633667281/7730096413484970\) \(7730096413484970\) \([2]\) \(1032192\) \(1.8440\)  
82110.bz3 82110bx2 \([1, 0, 0, -20195, -548163]\) \(910870482653192881/398111434452900\) \(398111434452900\) \([2, 2]\) \(516096\) \(1.4975\)  
82110.bz4 82110bx1 \([1, 0, 0, 4305, -63063]\) \(8823418415295119/6843786390000\) \(-6843786390000\) \([4]\) \(258048\) \(1.1509\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 82110.bz have rank \(0\).

Complex multiplication

The elliptic curves in class 82110.bz do not have complex multiplication.

Modular form 82110.2.a.bz

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} + q^{7} + q^{8} + q^{9} + q^{10} + 4 q^{11} + q^{12} + 6 q^{13} + q^{14} + q^{15} + q^{16} + q^{17} + q^{18} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.