Properties

Label 82110.bz
Number of curves 44
Conductor 8211082110
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bz1")
 
E.isogeny_class()
 

Elliptic curves in class 82110.bz

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
82110.bz1 82110bx4 [1,0,0,275345,55609533][1, 0, 0, -275345, -55609533] 2308635631424282766481/11927037862158302308635631424282766481/1192703786215830 11927037862158301192703786215830 [2][2] 10321921032192 1.84401.8440  
82110.bz2 82110bx3 [1,0,0,157045,23564807][1, 0, 0, -157045, 23564807] 428347490215633667281/7730096413484970428347490215633667281/7730096413484970 77300964134849707730096413484970 [2][2] 10321921032192 1.84401.8440  
82110.bz3 82110bx2 [1,0,0,20195,548163][1, 0, 0, -20195, -548163] 910870482653192881/398111434452900910870482653192881/398111434452900 398111434452900398111434452900 [2,2][2, 2] 516096516096 1.49751.4975  
82110.bz4 82110bx1 [1,0,0,4305,63063][1, 0, 0, 4305, -63063] 8823418415295119/68437863900008823418415295119/6843786390000 6843786390000-6843786390000 [4][4] 258048258048 1.15091.1509 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 82110.bz have rank 00.

Complex multiplication

The elliptic curves in class 82110.bz do not have complex multiplication.

Modular form 82110.2.a.bz

sage: E.q_eigenform(10)
 
q+q2+q3+q4+q5+q6+q7+q8+q9+q10+4q11+q12+6q13+q14+q15+q16+q17+q18+8q19+O(q20)q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} + q^{7} + q^{8} + q^{9} + q^{10} + 4 q^{11} + q^{12} + 6 q^{13} + q^{14} + q^{15} + q^{16} + q^{17} + q^{18} + 8 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.