Properties

Label 82110.d
Number of curves 22
Conductor 8211082110
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Elliptic curves in class 82110.d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
82110.d1 82110b2 [1,1,0,3584833,2613965123][1, 1, 0, -3584833, -2613965123] 5094841618754165781496729/6743319605794805094841618754165781496729/674331960579480 674331960579480674331960579480 [2][2] 22425602242560 2.25972.2597  
82110.d2 82110b1 [1,1,0,223433,41149563][1, 1, 0, -223433, -41149563] 1233583919615644207129/14314037777726400-1233583919615644207129/14314037777726400 14314037777726400-14314037777726400 [2][2] 11212801121280 1.91321.9132 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 82110.d have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
221+T1 + T
331+T1 + T
551+T1 + T
771+T1 + T
17171+T1 + T
23231+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
1111 14T+11T2 1 - 4 T + 11 T^{2} 1.11.ae
1313 1+6T+13T2 1 + 6 T + 13 T^{2} 1.13.g
1919 12T+19T2 1 - 2 T + 19 T^{2} 1.19.ac
2929 1+29T2 1 + 29 T^{2} 1.29.a
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 82110.d do not have complex multiplication.

Modular form 82110.2.a.d

Copy content sage:E.q_eigenform(10)
 
qq2q3+q4q5+q6q7q8+q9+q10+4q11q126q13+q14+q15+q16q17q18+2q19+O(q20)q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{7} - q^{8} + q^{9} + q^{10} + 4 q^{11} - q^{12} - 6 q^{13} + q^{14} + q^{15} + q^{16} - q^{17} - q^{18} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.