sage:E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 82110.d
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
82110.d1 |
82110b2 |
[1,1,0,−3584833,−2613965123] |
5094841618754165781496729/674331960579480 |
674331960579480 |
[2] |
2242560 |
2.2597
|
|
82110.d2 |
82110b1 |
[1,1,0,−223433,−41149563] |
−1233583919615644207129/14314037777726400 |
−14314037777726400 |
[2] |
1121280 |
1.9132
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 82110.d have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
3 | 1+T |
5 | 1+T |
7 | 1+T |
17 | 1+T |
23 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
11 |
1−4T+11T2 |
1.11.ae
|
13 |
1+6T+13T2 |
1.13.g
|
19 |
1−2T+19T2 |
1.19.ac
|
29 |
1+29T2 |
1.29.a
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 82110.d do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.