Show commands:
SageMath
E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 82110.d
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
82110.d1 | 82110b2 | \([1, 1, 0, -3584833, -2613965123]\) | \(5094841618754165781496729/674331960579480\) | \(674331960579480\) | \([2]\) | \(2242560\) | \(2.2597\) | |
82110.d2 | 82110b1 | \([1, 1, 0, -223433, -41149563]\) | \(-1233583919615644207129/14314037777726400\) | \(-14314037777726400\) | \([2]\) | \(1121280\) | \(1.9132\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 82110.d have rank \(1\).
Complex multiplication
The elliptic curves in class 82110.d do not have complex multiplication.Modular form 82110.2.a.d
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.