Properties

Label 82110.i
Number of curves 22
Conductor 8211082110
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("i1")
 
E.isogeny_class()
 

Elliptic curves in class 82110.i

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
82110.i1 82110i1 [1,1,0,15402,738684][1, 1, 0, -15402, -738684] 404109561997973161/2215245690000404109561997973161/2215245690000 22152456900002215245690000 [2][2] 221184221184 1.21211.2121 Γ0(N)\Gamma_0(N)-optimal
82110.i2 82110i2 [1,1,0,6902,1539384][1, 1, 0, -6902, -1539384] 36370300595789161/998842553849700-36370300595789161/998842553849700 998842553849700-998842553849700 [2][2] 442368442368 1.55871.5587  

Rank

sage: E.rank()
 

The elliptic curves in class 82110.i have rank 11.

Complex multiplication

The elliptic curves in class 82110.i do not have complex multiplication.

Modular form 82110.2.a.i

sage: E.q_eigenform(10)
 
qq2q3+q4+q5+q6q7q8+q9q10q12+6q13+q14q15+q16q17q18+O(q20)q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{7} - q^{8} + q^{9} - q^{10} - q^{12} + 6 q^{13} + q^{14} - q^{15} + q^{16} - q^{17} - q^{18} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.