Show commands:
SageMath
E = EllipticCurve("i1")
E.isogeny_class()
Elliptic curves in class 82110.i
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
82110.i1 | 82110i1 | \([1, 1, 0, -15402, -738684]\) | \(404109561997973161/2215245690000\) | \(2215245690000\) | \([2]\) | \(221184\) | \(1.2121\) | \(\Gamma_0(N)\)-optimal |
82110.i2 | 82110i2 | \([1, 1, 0, -6902, -1539384]\) | \(-36370300595789161/998842553849700\) | \(-998842553849700\) | \([2]\) | \(442368\) | \(1.5587\) |
Rank
sage: E.rank()
The elliptic curves in class 82110.i have rank \(1\).
Complex multiplication
The elliptic curves in class 82110.i do not have complex multiplication.Modular form 82110.2.a.i
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.