Properties

Label 82110.i
Number of curves $2$
Conductor $82110$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("i1")
 
E.isogeny_class()
 

Elliptic curves in class 82110.i

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
82110.i1 82110i1 \([1, 1, 0, -15402, -738684]\) \(404109561997973161/2215245690000\) \(2215245690000\) \([2]\) \(221184\) \(1.2121\) \(\Gamma_0(N)\)-optimal
82110.i2 82110i2 \([1, 1, 0, -6902, -1539384]\) \(-36370300595789161/998842553849700\) \(-998842553849700\) \([2]\) \(442368\) \(1.5587\)  

Rank

sage: E.rank()
 

The elliptic curves in class 82110.i have rank \(1\).

Complex multiplication

The elliptic curves in class 82110.i do not have complex multiplication.

Modular form 82110.2.a.i

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{7} - q^{8} + q^{9} - q^{10} - q^{12} + 6 q^{13} + q^{14} - q^{15} + q^{16} - q^{17} - q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.