Properties

Label 82110.o
Number of curves 44
Conductor 8211082110
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("o1")
 
E.isogeny_class()
 

Elliptic curves in class 82110.o

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
82110.o1 82110q4 [1,1,0,5686712,5222003136][1, 1, 0, -5686712, -5222003136] 20337966805091038553406601/2416859109504020337966805091038553406601/24168591095040 2416859109504024168591095040 [2][2] 20316162031616 2.28092.2809  
82110.o2 82110q2 [1,1,0,355512,81660096][1, 1, 0, -355512, -81660096] 4969222174347906673801/54126272987136004969222174347906673801/5412627298713600 54126272987136005412627298713600 [2,2][2, 2] 10158081015808 1.93441.9344  
82110.o3 82110q3 [1,1,0,267192,123117504][1, 1, 0, -267192, -123117504] 2109582937351555472521/5315560665303840000-2109582937351555472521/5315560665303840000 5315560665303840000-5315560665303840000 [4][4] 20316162031616 2.28092.2809  
82110.o4 82110q1 [1,1,0,27832,592064][1, 1, 0, -27832, -592064] 2384412229264108681/12343091763609602384412229264108681/1234309176360960 12343091763609601234309176360960 [2][2] 507904507904 1.58781.5878 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 82110.o have rank 00.

Complex multiplication

The elliptic curves in class 82110.o do not have complex multiplication.

Modular form 82110.2.a.o

sage: E.q_eigenform(10)
 
qq2q3+q4+q5+q6+q7q8+q9q10q122q13q14q15+q16+q17q18+4q19+O(q20)q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} + q^{7} - q^{8} + q^{9} - q^{10} - q^{12} - 2 q^{13} - q^{14} - q^{15} + q^{16} + q^{17} - q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.