E = EllipticCurve("o1")
E.isogeny_class()
Elliptic curves in class 82110.o
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
82110.o1 |
82110q4 |
[1,1,0,−5686712,−5222003136] |
20337966805091038553406601/24168591095040 |
24168591095040 |
[2] |
2031616 |
2.2809
|
|
82110.o2 |
82110q2 |
[1,1,0,−355512,−81660096] |
4969222174347906673801/5412627298713600 |
5412627298713600 |
[2,2] |
1015808 |
1.9344
|
|
82110.o3 |
82110q3 |
[1,1,0,−267192,−123117504] |
−2109582937351555472521/5315560665303840000 |
−5315560665303840000 |
[4] |
2031616 |
2.2809
|
|
82110.o4 |
82110q1 |
[1,1,0,−27832,−592064] |
2384412229264108681/1234309176360960 |
1234309176360960 |
[2] |
507904 |
1.5878
|
Γ0(N)-optimal |
The elliptic curves in class 82110.o have
rank 0.
The elliptic curves in class 82110.o do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.