Properties

Label 82110.q
Number of curves $1$
Conductor $82110$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("q1")
 
E.isogeny_class()
 

Elliptic curves in class 82110.q

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
82110.q1 82110p1 \([1, 1, 0, -4172048132, -135120107513136]\) \(-8031037295101123163637345999575881/3239421604398803614051054080000\) \(-3239421604398803614051054080000\) \([]\) \(183625728\) \(4.5630\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 82110.q1 has rank \(0\).

Complex multiplication

The elliptic curves in class 82110.q do not have complex multiplication.

Modular form 82110.2.a.q

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} + q^{7} - q^{8} + q^{9} - q^{10} + 3 q^{11} - q^{12} + 3 q^{13} - q^{14} - q^{15} + q^{16} - q^{17} - q^{18} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display