sage:E = EllipticCurve("u1")
E.isogeny_class()
Elliptic curves in class 82110.u
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
82110.u1 |
82110s2 |
[1,0,1,−142605354,−648136131428] |
320723808872496523935142301209/4135958612138279753487360 |
4135958612138279753487360 |
[2] |
23961600 |
3.5318
|
|
82110.u2 |
82110s1 |
[1,0,1,−16832554,10611485852] |
527440803339012896847466009/256574315980928345702400 |
256574315980928345702400 |
[2] |
11980800 |
3.1853
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 82110.u have
rank 2.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
3 | 1−T |
5 | 1+T |
7 | 1+T |
17 | 1−T |
23 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
11 |
1+2T+11T2 |
1.11.c
|
13 |
1+4T+13T2 |
1.13.e
|
19 |
1+4T+19T2 |
1.19.e
|
29 |
1−2T+29T2 |
1.29.ac
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 82110.u do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.