Show commands:
SageMath
E = EllipticCurve("u1")
E.isogeny_class()
Elliptic curves in class 82110.u
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
82110.u1 | 82110s2 | \([1, 0, 1, -142605354, -648136131428]\) | \(320723808872496523935142301209/4135958612138279753487360\) | \(4135958612138279753487360\) | \([2]\) | \(23961600\) | \(3.5318\) | |
82110.u2 | 82110s1 | \([1, 0, 1, -16832554, 10611485852]\) | \(527440803339012896847466009/256574315980928345702400\) | \(256574315980928345702400\) | \([2]\) | \(11980800\) | \(3.1853\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 82110.u have rank \(2\).
Complex multiplication
The elliptic curves in class 82110.u do not have complex multiplication.Modular form 82110.2.a.u
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.