Properties

Label 82110.u
Number of curves 22
Conductor 8211082110
CM no
Rank 22
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("u1")
 
E.isogeny_class()
 

Elliptic curves in class 82110.u

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
82110.u1 82110s2 [1,0,1,142605354,648136131428][1, 0, 1, -142605354, -648136131428] 320723808872496523935142301209/4135958612138279753487360320723808872496523935142301209/4135958612138279753487360 41359586121382797534873604135958612138279753487360 [2][2] 2396160023961600 3.53183.5318  
82110.u2 82110s1 [1,0,1,16832554,10611485852][1, 0, 1, -16832554, 10611485852] 527440803339012896847466009/256574315980928345702400527440803339012896847466009/256574315980928345702400 256574315980928345702400256574315980928345702400 [2][2] 1198080011980800 3.18533.1853 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 82110.u have rank 22.

Complex multiplication

The elliptic curves in class 82110.u do not have complex multiplication.

Modular form 82110.2.a.u

sage: E.q_eigenform(10)
 
qq2+q3+q4q5q6q7q8+q9+q102q11+q124q13+q14q15+q16+q17q184q19+O(q20)q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - q^{7} - q^{8} + q^{9} + q^{10} - 2 q^{11} + q^{12} - 4 q^{13} + q^{14} - q^{15} + q^{16} + q^{17} - q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.