Show commands:
SageMath
E = EllipticCurve("x1")
E.isogeny_class()
Elliptic curves in class 82110.x
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
82110.x1 | 82110z2 | \([1, 0, 1, -20289, 1093786]\) | \(923580740393079049/16049455024050\) | \(16049455024050\) | \([2]\) | \(270336\) | \(1.3307\) | |
82110.x2 | 82110z1 | \([1, 0, 1, -39, 48886]\) | \(-6321363049/1032553777500\) | \(-1032553777500\) | \([2]\) | \(135168\) | \(0.98414\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 82110.x have rank \(1\).
Complex multiplication
The elliptic curves in class 82110.x do not have complex multiplication.Modular form 82110.2.a.x
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.