Properties

Label 82110.z
Number of curves 44
Conductor 8211082110
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("z1")
 
E.isogeny_class()
 

Elliptic curves in class 82110.z

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
82110.z1 82110y4 [1,0,1,3088994359,62459382879718][1, 0, 1, -3088994359, -62459382879718] 3259680673368195763530660699476329/2010957817850321681612880000003259680673368195763530660699476329/201095781785032168161288000000 201095781785032168161288000000201095781785032168161288000000 [2][2] 173187072173187072 4.37454.3745  
82110.z2 82110y2 [1,0,1,548298544,4921801751126][1, 0, 1, -548298544, 4921801751126] 18229509733721637057438776494969/8446526806862944937651220018229509733721637057438776494969/84465268068629449376512200 8446526806862944937651220084465268068629449376512200 [6][6] 5772902457729024 3.82523.8252  
82110.z3 82110y1 [1,0,1,16857544,154988557526][1, 0, 1, -16857544, 154988557526] 529793445280877735265310969/10070862368645180735640000-529793445280877735265310969/10070862368645180735640000 10070862368645180735640000-10070862368645180735640000 [6][6] 2886451228864512 3.47873.4787 Γ0(N)\Gamma_0(N)-optimal
82110.z4 82110y3 [1,0,1,151005641,4075878879718][1, 0, 1, 151005641, -4075878879718] 380805515386703785466660523671/7397142570224064000000000000380805515386703785466660523671/7397142570224064000000000000 7397142570224064000000000000-7397142570224064000000000000 [2][2] 8659353686593536 4.02804.0280  

Rank

sage: E.rank()
 

The elliptic curves in class 82110.z have rank 00.

Complex multiplication

The elliptic curves in class 82110.z do not have complex multiplication.

Modular form 82110.2.a.z

sage: E.q_eigenform(10)
 
qq2+q3+q4q5q6+q7q8+q9+q10+6q11+q124q13q14q15+q16+q17q18+2q19+O(q20)q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + q^{7} - q^{8} + q^{9} + q^{10} + 6 q^{11} + q^{12} - 4 q^{13} - q^{14} - q^{15} + q^{16} + q^{17} - q^{18} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1362312662132631)\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.