Properties

Label 82110.z
Number of curves $4$
Conductor $82110$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("z1")
 
E.isogeny_class()
 

Elliptic curves in class 82110.z

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
82110.z1 82110y4 \([1, 0, 1, -3088994359, -62459382879718]\) \(3259680673368195763530660699476329/201095781785032168161288000000\) \(201095781785032168161288000000\) \([2]\) \(173187072\) \(4.3745\)  
82110.z2 82110y2 \([1, 0, 1, -548298544, 4921801751126]\) \(18229509733721637057438776494969/84465268068629449376512200\) \(84465268068629449376512200\) \([6]\) \(57729024\) \(3.8252\)  
82110.z3 82110y1 \([1, 0, 1, -16857544, 154988557526]\) \(-529793445280877735265310969/10070862368645180735640000\) \(-10070862368645180735640000\) \([6]\) \(28864512\) \(3.4787\) \(\Gamma_0(N)\)-optimal
82110.z4 82110y3 \([1, 0, 1, 151005641, -4075878879718]\) \(380805515386703785466660523671/7397142570224064000000000000\) \(-7397142570224064000000000000\) \([2]\) \(86593536\) \(4.0280\)  

Rank

sage: E.rank()
 

The elliptic curves in class 82110.z have rank \(0\).

Complex multiplication

The elliptic curves in class 82110.z do not have complex multiplication.

Modular form 82110.2.a.z

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + q^{7} - q^{8} + q^{9} + q^{10} + 6 q^{11} + q^{12} - 4 q^{13} - q^{14} - q^{15} + q^{16} + q^{17} - q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.