E = EllipticCurve("z1")
E.isogeny_class()
Elliptic curves in class 82110.z
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
82110.z1 |
82110y4 |
[1,0,1,−3088994359,−62459382879718] |
3259680673368195763530660699476329/201095781785032168161288000000 |
201095781785032168161288000000 |
[2] |
173187072 |
4.3745
|
|
82110.z2 |
82110y2 |
[1,0,1,−548298544,4921801751126] |
18229509733721637057438776494969/84465268068629449376512200 |
84465268068629449376512200 |
[6] |
57729024 |
3.8252
|
|
82110.z3 |
82110y1 |
[1,0,1,−16857544,154988557526] |
−529793445280877735265310969/10070862368645180735640000 |
−10070862368645180735640000 |
[6] |
28864512 |
3.4787
|
Γ0(N)-optimal |
82110.z4 |
82110y3 |
[1,0,1,151005641,−4075878879718] |
380805515386703785466660523671/7397142570224064000000000000 |
−7397142570224064000000000000 |
[2] |
86593536 |
4.0280
|
|
The elliptic curves in class 82110.z have
rank 0.
The elliptic curves in class 82110.z do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1362312662132631⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.