y 2 + x y = x 3 + x 2 − 355512 x − 81660096 y^2+xy=x^3+x^2-355512x-81660096 y 2 + x y = x 3 + x 2 − 3 5 5 5 1 2 x − 8 1 6 6 0 0 9 6
(homogenize , simplify )
y 2 z + x y z = x 3 + x 2 z − 355512 x z 2 − 81660096 z 3 y^2z+xyz=x^3+x^2z-355512xz^2-81660096z^3 y 2 z + x y z = x 3 + x 2 z − 3 5 5 5 1 2 x z 2 − 8 1 6 6 0 0 9 6 z 3
(dehomogenize , simplify )
y 2 = x 3 − 460744227 x − 3803022278946 y^2=x^3-460744227x-3803022278946 y 2 = x 3 − 4 6 0 7 4 4 2 2 7 x − 3 8 0 3 0 2 2 2 7 8 9 4 6
(homogenize , minimize )
sage: E = EllipticCurve([1, 1, 0, -355512, -81660096])
gp: E = ellinit([1, 1, 0, -355512, -81660096])
magma: E := EllipticCurve([1, 1, 0, -355512, -81660096]);
oscar: E = elliptic_curve([1, 1, 0, -355512, -81660096])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z / 2 Z ⊕ Z / 2 Z \Z/{2}\Z \oplus \Z/{2}\Z Z / 2 Z ⊕ Z / 2 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( − 336 , 168 ) (-336, 168) ( − 3 3 6 , 1 6 8 ) 0 0 0 2 2 2
( 688 , − 344 ) (688, -344) ( 6 8 8 , − 3 4 4 ) 0 0 0 2 2 2
( − 336 , 168 ) \left(-336, 168\right) ( − 3 3 6 , 1 6 8 ) , ( 688 , − 344 ) \left(688, -344\right) ( 6 8 8 , − 3 4 4 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
82110 82110 8 2 1 1 0 = 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 17 ⋅ 23 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 1 7 ⋅ 2 3
sage: E.conductor().factor()
Discriminant :
Δ \Delta Δ
=
5412627298713600 5412627298713600 5 4 1 2 6 2 7 2 9 8 7 1 3 6 0 0 = 2 16 ⋅ 3 2 ⋅ 5 2 ⋅ 7 4 ⋅ 1 7 2 ⋅ 2 3 2 2^{16} \cdot 3^{2} \cdot 5^{2} \cdot 7^{4} \cdot 17^{2} \cdot 23^{2} 2 1 6 ⋅ 3 2 ⋅ 5 2 ⋅ 7 4 ⋅ 1 7 2 ⋅ 2 3 2
sage: E.discriminant().factor()
j-invariant :
j j j
=
4969222174347906673801 5412627298713600 \frac{4969222174347906673801}{5412627298713600} 5 4 1 2 6 2 7 2 9 8 7 1 3 6 0 0 4 9 6 9 2 2 2 1 7 4 3 4 7 9 0 6 6 7 3 8 0 1 = 2 − 16 ⋅ 3 − 2 ⋅ 5 − 2 ⋅ 7 − 4 ⋅ 1 7 − 2 ⋅ 2 3 − 2 ⋅ 3 1 3 ⋅ 55047 1 3 2^{-16} \cdot 3^{-2} \cdot 5^{-2} \cdot 7^{-4} \cdot 17^{-2} \cdot 23^{-2} \cdot 31^{3} \cdot 550471^{3} 2 − 1 6 ⋅ 3 − 2 ⋅ 5 − 2 ⋅ 7 − 4 ⋅ 1 7 − 2 ⋅ 2 3 − 2 ⋅ 3 1 3 ⋅ 5 5 0 4 7 1 3
sage: E.j_invariant().factor()
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 1.9343617504757938825918194501 1.9343617504757938825918194501 1 . 9 3 4 3 6 1 7 5 0 4 7 5 7 9 3 8 8 2 5 9 1 8 1 9 4 5 0 1
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 1.9343617504757938825918194501 1.9343617504757938825918194501 1 . 9 3 4 3 6 1 7 5 0 4 7 5 7 9 3 8 8 2 5 9 1 8 1 9 4 5 0 1
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 0.9435537072574262 0.9435537072574262 0 . 9 4 3 5 5 3 7 0 7 2 5 7 4 2 6 2
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 4.414843285803213 4.414843285803213 4 . 4 1 4 8 4 3 2 8 5 8 0 3 2 1 3
Analytic rank :
r a n r_{\mathrm{an}} r a n = 0 0 0
Mordell-Weil rank :
r r r = 0 0 0
gp: [lower,upper] = ellrank(E)
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) = 1 1 1
G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
Real period :
Ω \Omega Ω ≈ 0.19553037440561962404572717596 0.19553037440561962404572717596 0 . 1 9 5 5 3 0 3 7 4 4 0 5 6 1 9 6 2 4 0 4 5 7 2 7 1 7 5 9 6
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 128 128 1 2 8
= 2 ⋅ 2 ⋅ 2 ⋅ 2 2 ⋅ 2 ⋅ 2 2\cdot2\cdot2\cdot2^{2}\cdot2\cdot2 2 ⋅ 2 ⋅ 2 ⋅ 2 2 ⋅ 2 ⋅ 2
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 4 4 4
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ( E , 1 ) L(E,1) L ( E , 1 ) ≈ 1.5642429952449569923658174077 1.5642429952449569923658174077 1 . 5 6 4 2 4 2 9 9 5 2 4 4 9 5 6 9 9 2 3 6 5 8 1 7 4 0 7 7
r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
=
1 1 1
(exact )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
1.564242995 ≈ L ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.195530 ⋅ 1.000000 ⋅ 128 4 2 ≈ 1.564242995 \displaystyle 1.564242995 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.195530 \cdot 1.000000 \cdot 128}{4^2} \approx 1.564242995 1 . 5 6 4 2 4 2 9 9 5 ≈ L ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 4 2 1 ⋅ 0 . 1 9 5 5 3 0 ⋅ 1 . 0 0 0 0 0 0 ⋅ 1 2 8 ≈ 1 . 5 6 4 2 4 2 9 9 5
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
82110.2.a.o
q − q 2 − q 3 + q 4 + q 5 + q 6 + q 7 − q 8 + q 9 − q 10 − q 12 − 2 q 13 − q 14 − q 15 + q 16 + q 17 − q 18 + 4 q 19 + O ( q 20 ) q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} + q^{7} - q^{8} + q^{9} - q^{10} - q^{12} - 2 q^{13} - q^{14} - q^{15} + q^{16} + q^{17} - q^{18} + 4 q^{19} + O(q^{20}) q − q 2 − q 3 + q 4 + q 5 + q 6 + q 7 − q 8 + q 9 − q 1 0 − q 1 2 − 2 q 1 3 − q 1 4 − q 1 5 + q 1 6 + q 1 7 − q 1 8 + 4 q 1 9 + O ( q 2 0 )
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
This elliptic curve is semistable .
There
are 6 primes p p p
of bad reduction :
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[1, 0, 4, 1], [1, 4, 0, 1], [16561, 4, 9662, 9], [3, 2, 15638, 23459], [23457, 4, 23456, 5], [13263, 2, 22438, 23459], [11731, 2, 0, 1], [14077, 4, 4694, 9]]
GL(2,Integers(23460)).subgroup(gens)
Gens := [[1, 0, 4, 1], [1, 4, 0, 1], [16561, 4, 9662, 9], [3, 2, 15638, 23459], [23457, 4, 23456, 5], [13263, 2, 22438, 23459], [11731, 2, 0, 1], [14077, 4, 4694, 9]];
sub<GL(2,Integers(23460))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 23460 = 2 2 ⋅ 3 ⋅ 5 ⋅ 17 ⋅ 23 23460 = 2^{2} \cdot 3 \cdot 5 \cdot 17 \cdot 23 2 3 4 6 0 = 2 2 ⋅ 3 ⋅ 5 ⋅ 1 7 ⋅ 2 3 , index 48 48 4 8 , genus 0 0 0 , and generators
( 1 0 4 1 ) , ( 1 4 0 1 ) , ( 16561 4 9662 9 ) , ( 3 2 15638 23459 ) , ( 23457 4 23456 5 ) , ( 13263 2 22438 23459 ) , ( 11731 2 0 1 ) , ( 14077 4 4694 9 ) \left(\begin{array}{rr}
1 & 0 \\
4 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & 4 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
16561 & 4 \\
9662 & 9
\end{array}\right),\left(\begin{array}{rr}
3 & 2 \\
15638 & 23459
\end{array}\right),\left(\begin{array}{rr}
23457 & 4 \\
23456 & 5
\end{array}\right),\left(\begin{array}{rr}
13263 & 2 \\
22438 & 23459
\end{array}\right),\left(\begin{array}{rr}
11731 & 2 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
14077 & 4 \\
4694 & 9
\end{array}\right) ( 1 4 0 1 ) , ( 1 0 4 1 ) , ( 1 6 5 6 1 9 6 6 2 4 9 ) , ( 3 1 5 6 3 8 2 2 3 4 5 9 ) , ( 2 3 4 5 7 2 3 4 5 6 4 5 ) , ( 1 3 2 6 3 2 2 4 3 8 2 2 3 4 5 9 ) , ( 1 1 7 3 1 0 2 1 ) , ( 1 4 0 7 7 4 6 9 4 4 9 ) .
The torsion field K : = Q ( E [ 23460 ] ) K:=\Q(E[23460]) K : = Q ( E [ 2 3 4 6 0 ] ) is a degree-964402442403840 964402442403840 9 6 4 4 0 2 4 4 2 4 0 3 8 4 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 23460 Z ) \GL_2(\Z/23460\Z) GL 2 ( Z / 2 3 4 6 0 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
nonsplit multiplicative
4 4 4
1 1 1
3 3 3
nonsplit multiplicative
4 4 4
27370 = 2 ⋅ 5 ⋅ 7 ⋅ 17 ⋅ 23 27370 = 2 \cdot 5 \cdot 7 \cdot 17 \cdot 23 2 7 3 7 0 = 2 ⋅ 5 ⋅ 7 ⋅ 1 7 ⋅ 2 3
5 5 5
split multiplicative
6 6 6
16422 = 2 ⋅ 3 ⋅ 7 ⋅ 17 ⋅ 23 16422 = 2 \cdot 3 \cdot 7 \cdot 17 \cdot 23 1 6 4 2 2 = 2 ⋅ 3 ⋅ 7 ⋅ 1 7 ⋅ 2 3
7 7 7
split multiplicative
8 8 8
11730 = 2 ⋅ 3 ⋅ 5 ⋅ 17 ⋅ 23 11730 = 2 \cdot 3 \cdot 5 \cdot 17 \cdot 23 1 1 7 3 0 = 2 ⋅ 3 ⋅ 5 ⋅ 1 7 ⋅ 2 3
17 17 1 7
split multiplicative
18 18 1 8
4830 = 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 23 4830 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 23 4 8 3 0 = 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 2 3
23 23 2 3
nonsplit multiplicative
24 24 2 4
3570 = 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 17 3570 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 3 5 7 0 = 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 1 7
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2.
Its isogeny class 82110q
consists of 4 curves linked by isogenies of
degrees dividing 4.
This elliptic curve is its own minimal quadratic twist .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z ⊕ Z / 2 Z \cong \Z/{2}\Z \oplus \Z/{2}\Z ≅ Z / 2 Z ⊕ Z / 2 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( 85 ) \Q(\sqrt{85}) Q ( 8 5 )
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
4 4 4
Q ( i , 69 ) \Q(i, \sqrt{69}) Q ( i , 6 9 )
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
4 4 4
Q ( − 69 , − 85 ) \Q(\sqrt{-69}, \sqrt{-85}) Q ( − 6 9 , − 8 5 )
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 4 Z ⊕ Z / 4 Z \Z/4\Z \oplus \Z/4\Z Z / 4 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 2 Z ⊕ Z / 8 Z \Z/2\Z \oplus \Z/8\Z Z / 2 Z ⊕ Z / 8 Z
not in database
8 8 8
deg 8
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 8 Z \Z/2\Z \oplus \Z/8\Z Z / 2 Z ⊕ Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 8 Z \Z/2\Z \oplus \Z/8\Z Z / 2 Z ⊕ Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 12 Z \Z/2\Z \oplus \Z/12\Z Z / 2 Z ⊕ Z / 1 2 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
All Iwasawa λ \lambda λ and μ \mu μ -invariants for primes p ≥ 3 p\ge
3 p ≥ 3 of good reduction are zero.
p p p -adic regulators
All p p p -adic regulators are identically 1 1 1 since the rank is 0 0 0 .