Properties

Label 82110u
Number of curves $1$
Conductor $82110$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("u1")
 
E.isogeny_class()
 

Elliptic curves in class 82110u

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
82110.s1 82110u1 \([1, 0, 1, 46826, 13756472]\) \(11355289913493692711/88276883291730000\) \(-88276883291730000\) \([]\) \(1198080\) \(1.9331\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 82110u1 has rank \(2\).

Complex multiplication

The elliptic curves in class 82110u do not have complex multiplication.

Modular form 82110.2.a.u

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - q^{7} - q^{8} + q^{9} + q^{10} - 5 q^{11} + q^{12} - q^{13} + q^{14} - q^{15} + q^{16} + q^{17} - q^{18} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display