y 2 + x y + y = x 3 − 6306049 x + 6094619972 y^2+xy+y=x^3-6306049x+6094619972 y 2 + x y + y = x 3 − 6 3 0 6 0 4 9 x + 6 0 9 4 6 1 9 9 7 2
(homogenize , simplify )
y 2 z + x y z + y z 2 = x 3 − 6306049 x z 2 + 6094619972 z 3 y^2z+xyz+yz^2=x^3-6306049xz^2+6094619972z^3 y 2 z + x y z + y z 2 = x 3 − 6 3 0 6 0 4 9 x z 2 + 6 0 9 4 6 1 9 9 7 2 z 3
(dehomogenize , simplify )
y 2 = x 3 − 8172638883 x + 284375107341918 y^2=x^3-8172638883x+284375107341918 y 2 = x 3 − 8 1 7 2 6 3 8 8 8 3 x + 2 8 4 3 7 5 1 0 7 3 4 1 9 1 8
(homogenize , minimize )
sage: E = EllipticCurve([1, 0, 1, -6306049, 6094619972])
gp: E = ellinit([1, 0, 1, -6306049, 6094619972])
magma: E := EllipticCurve([1, 0, 1, -6306049, 6094619972]);
oscar: E = elliptic_curve([1, 0, 1, -6306049, 6094619972])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z ⊕ Z / 2 Z \Z \oplus \Z \oplus \Z/{2}\Z Z ⊕ Z ⊕ Z / 2 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( 1450 , − 709 ) (1450, -709) ( 1 4 5 0 , − 7 0 9 ) 1.1394462542427674285253802952 1.1394462542427674285253802952 1 . 1 3 9 4 4 6 2 5 4 2 4 2 7 6 7 4 2 8 5 2 5 3 8 0 2 9 5 2 ∞ \infty ∞
( 1540 , 5243 ) (1540, 5243) ( 1 5 4 0 , 5 2 4 3 ) 4.4984076750099378943806028254 4.4984076750099378943806028254 4 . 4 9 8 4 0 7 6 7 5 0 0 9 9 3 7 8 9 4 3 8 0 6 0 2 8 2 5 4 ∞ \infty ∞
( 5799 / 4 , − 5803 / 8 ) (5799/4, -5803/8) ( 5 7 9 9 / 4 , − 5 8 0 3 / 8 ) 0 0 0 2 2 2
( 1450 , − 709 ) \left(1450, -709\right) ( 1 4 5 0 , − 7 0 9 ) , ( 1450 , − 742 ) \left(1450, -742\right) ( 1 4 5 0 , − 7 4 2 ) , ( 1456 , − 316 ) \left(1456, -316\right) ( 1 4 5 6 , − 3 1 6 ) , ( 1456 , − 1141 ) \left(1456, -1141\right) ( 1 4 5 6 , − 1 1 4 1 ) , ( 1540 , 5243 ) \left(1540, 5243\right) ( 1 5 4 0 , 5 2 4 3 ) , ( 1540 , − 6784 ) \left(1540, -6784\right) ( 1 5 4 0 , − 6 7 8 4 ) , ( 2206 , 52934 ) \left(2206, 52934\right) ( 2 2 0 6 , 5 2 9 3 4 ) , ( 2206 , − 55141 ) \left(2206, -55141\right) ( 2 2 0 6 , − 5 5 1 4 1 ) , ( 2856 , 105259 ) \left(2856, 105259\right) ( 2 8 5 6 , 1 0 5 2 5 9 ) , ( 2856 , − 108116 ) \left(2856, -108116\right) ( 2 8 5 6 , − 1 0 8 1 1 6 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
82110 82110 8 2 1 1 0 = 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 17 ⋅ 23 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 1 7 ⋅ 2 3
sage: E.conductor().factor()
Discriminant :
Δ \Delta Δ
=
738990000 738990000 7 3 8 9 9 0 0 0 0 = 2 4 ⋅ 3 3 ⋅ 5 4 ⋅ 7 ⋅ 17 ⋅ 23 2^{4} \cdot 3^{3} \cdot 5^{4} \cdot 7 \cdot 17 \cdot 23 2 4 ⋅ 3 3 ⋅ 5 4 ⋅ 7 ⋅ 1 7 ⋅ 2 3
sage: E.discriminant().factor()
j-invariant :
j j j
=
27732922385367321140481289 738990000 \frac{27732922385367321140481289}{738990000} 7 3 8 9 9 0 0 0 0 2 7 7 3 2 9 2 2 3 8 5 3 6 7 3 2 1 1 4 0 4 8 1 2 8 9 = 2 − 4 ⋅ 3 − 3 ⋅ 5 − 4 ⋅ 7 − 1 ⋅ 1 7 − 1 ⋅ 2 3 − 1 ⋅ 30269032 9 3 2^{-4} \cdot 3^{-3} \cdot 5^{-4} \cdot 7^{-1} \cdot 17^{-1} \cdot 23^{-1} \cdot 302690329^{3} 2 − 4 ⋅ 3 − 3 ⋅ 5 − 4 ⋅ 7 − 1 ⋅ 1 7 − 1 ⋅ 2 3 − 1 ⋅ 3 0 2 6 9 0 3 2 9 3
sage: E.j_invariant().factor()
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 2.1421720770306522322666267494 2.1421720770306522322666267494 2 . 1 4 2 1 7 2 0 7 7 0 3 0 6 5 2 2 3 2 2 6 6 6 2 6 7 4 9 4
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 2.1421720770306522322666267494 2.1421720770306522322666267494 2 . 1 4 2 1 7 2 0 7 7 0 3 0 6 5 2 2 3 2 2 6 6 6 2 6 7 4 9 4
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 0.9741969002781183 0.9741969002781183 0 . 9 7 4 1 9 6 9 0 0 2 7 8 1 1 8 3
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 5.177237521422976 5.177237521422976 5 . 1 7 7 2 3 7 5 2 1 4 2 2 9 7 6
Analytic rank :
r a n r_{\mathrm{an}} r a n = 2 2 2
Mordell-Weil rank :
r r r = 2 2 2
gp: [lower,upper] = ellrank(E)
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 5.1169658991019710323018380492 5.1169658991019710323018380492 5 . 1 1 6 9 6 5 8 9 9 1 0 1 9 7 1 0 3 2 3 0 1 8 3 8 0 4 9 2
G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
Real period :
Ω \Omega Ω ≈ 0.57867235996945864765578810372 0.57867235996945864765578810372 0 . 5 7 8 6 7 2 3 5 9 9 6 9 4 5 8 6 4 7 6 5 5 7 8 8 1 0 3 7 2
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 12 12 1 2
= 2 ⋅ 3 ⋅ 2 ⋅ 1 ⋅ 1 ⋅ 1 2\cdot3\cdot2\cdot1\cdot1\cdot1 2 ⋅ 3 ⋅ 2 ⋅ 1 ⋅ 1 ⋅ 1
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 2 2 2
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ( 2 ) ( E , 1 ) / 2 ! L^{(2)}(E,1)/2! L ( 2 ) ( E , 1 ) / 2 ! ≈ 8.8831401981497411983678516193 8.8831401981497411983678516193 8 . 8 8 3 1 4 0 1 9 8 1 4 9 7 4 1 1 9 8 3 6 7 8 5 1 6 1 9 3
r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
8.883140198 ≈ L ( 2 ) ( E , 1 ) / 2 ! = ? # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.578672 ⋅ 5.116966 ⋅ 12 2 2 ≈ 8.883140198 \displaystyle 8.883140198 \approx L^{(2)}(E,1)/2! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.578672 \cdot 5.116966 \cdot 12}{2^2} \approx 8.883140198 8 . 8 8 3 1 4 0 1 9 8 ≈ L ( 2 ) ( E , 1 ) / 2 ! = ? # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 2 2 1 ⋅ 0 . 5 7 8 6 7 2 ⋅ 5 . 1 1 6 9 6 6 ⋅ 1 2 ≈ 8 . 8 8 3 1 4 0 1 9 8
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
82110.2.a.v
q − q 2 + q 3 + q 4 − q 5 − q 6 + q 7 − q 8 + q 9 + q 10 − 4 q 11 + q 12 − 6 q 13 − q 14 − q 15 + q 16 − q 17 − q 18 − 4 q 19 + O ( q 20 ) q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + q^{7} - q^{8} + q^{9} + q^{10} - 4 q^{11} + q^{12} - 6 q^{13} - q^{14} - q^{15} + q^{16} - q^{17} - q^{18} - 4 q^{19} + O(q^{20}) q − q 2 + q 3 + q 4 − q 5 − q 6 + q 7 − q 8 + q 9 + q 1 0 − 4 q 1 1 + q 1 2 − 6 q 1 3 − q 1 4 − q 1 5 + q 1 6 − q 1 7 − q 1 8 − 4 q 1 9 + O ( q 2 0 )
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
This elliptic curve is semistable .
There
are 6 primes p p p
of bad reduction :
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[234608, 3, 187685, 2], [1, 0, 8, 1], [328433, 8, 328432, 9], [1, 8, 0, 1], [7, 6, 328434, 328435], [1, 4, 4, 17], [285608, 3, 14285, 2], [41056, 205283, 41059, 41088], [41059, 41058, 123178, 287395], [131377, 8, 197068, 33], [19324, 1, 193223, 6], [218968, 3, 218965, 2]]
GL(2,Integers(328440)).subgroup(gens)
Gens := [[234608, 3, 187685, 2], [1, 0, 8, 1], [328433, 8, 328432, 9], [1, 8, 0, 1], [7, 6, 328434, 328435], [1, 4, 4, 17], [285608, 3, 14285, 2], [41056, 205283, 41059, 41088], [41059, 41058, 123178, 287395], [131377, 8, 197068, 33], [19324, 1, 193223, 6], [218968, 3, 218965, 2]];
sub<GL(2,Integers(328440))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 328440 = 2 3 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 17 ⋅ 23 328440 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 3 2 8 4 4 0 = 2 3 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 1 7 ⋅ 2 3 , index 48 48 4 8 , genus 0 0 0 , and generators
( 234608 3 187685 2 ) , ( 1 0 8 1 ) , ( 328433 8 328432 9 ) , ( 1 8 0 1 ) , ( 7 6 328434 328435 ) , ( 1 4 4 17 ) , ( 285608 3 14285 2 ) , ( 41056 205283 41059 41088 ) , ( 41059 41058 123178 287395 ) , ( 131377 8 197068 33 ) , ( 19324 1 193223 6 ) , ( 218968 3 218965 2 ) \left(\begin{array}{rr}
234608 & 3 \\
187685 & 2
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
8 & 1
\end{array}\right),\left(\begin{array}{rr}
328433 & 8 \\
328432 & 9
\end{array}\right),\left(\begin{array}{rr}
1 & 8 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
7 & 6 \\
328434 & 328435
\end{array}\right),\left(\begin{array}{rr}
1 & 4 \\
4 & 17
\end{array}\right),\left(\begin{array}{rr}
285608 & 3 \\
14285 & 2
\end{array}\right),\left(\begin{array}{rr}
41056 & 205283 \\
41059 & 41088
\end{array}\right),\left(\begin{array}{rr}
41059 & 41058 \\
123178 & 287395
\end{array}\right),\left(\begin{array}{rr}
131377 & 8 \\
197068 & 33
\end{array}\right),\left(\begin{array}{rr}
19324 & 1 \\
193223 & 6
\end{array}\right),\left(\begin{array}{rr}
218968 & 3 \\
218965 & 2
\end{array}\right) ( 2 3 4 6 0 8 1 8 7 6 8 5 3 2 ) , ( 1 8 0 1 ) , ( 3 2 8 4 3 3 3 2 8 4 3 2 8 9 ) , ( 1 0 8 1 ) , ( 7 3 2 8 4 3 4 6 3 2 8 4 3 5 ) , ( 1 4 4 1 7 ) , ( 2 8 5 6 0 8 1 4 2 8 5 3 2 ) , ( 4 1 0 5 6 4 1 0 5 9 2 0 5 2 8 3 4 1 0 8 8 ) , ( 4 1 0 5 9 1 2 3 1 7 8 4 1 0 5 8 2 8 7 3 9 5 ) , ( 1 3 1 3 7 7 1 9 7 0 6 8 8 3 3 ) , ( 1 9 3 2 4 1 9 3 2 2 3 1 6 ) , ( 2 1 8 9 6 8 2 1 8 9 6 5 3 2 ) .
The torsion field K : = Q ( E [ 328440 ] ) K:=\Q(E[328440]) K : = Q ( E [ 3 2 8 4 4 0 ] ) is a degree-31107765182178263040 31107765182178263040 3 1 1 0 7 7 6 5 1 8 2 1 7 8 2 6 3 0 4 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 328440 Z ) \GL_2(\Z/328440\Z) GL 2 ( Z / 3 2 8 4 4 0 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
nonsplit multiplicative
4 4 4
8211 = 3 ⋅ 7 ⋅ 17 ⋅ 23 8211 = 3 \cdot 7 \cdot 17 \cdot 23 8 2 1 1 = 3 ⋅ 7 ⋅ 1 7 ⋅ 2 3
3 3 3
split multiplicative
4 4 4
27370 = 2 ⋅ 5 ⋅ 7 ⋅ 17 ⋅ 23 27370 = 2 \cdot 5 \cdot 7 \cdot 17 \cdot 23 2 7 3 7 0 = 2 ⋅ 5 ⋅ 7 ⋅ 1 7 ⋅ 2 3
5 5 5
nonsplit multiplicative
6 6 6
16422 = 2 ⋅ 3 ⋅ 7 ⋅ 17 ⋅ 23 16422 = 2 \cdot 3 \cdot 7 \cdot 17 \cdot 23 1 6 4 2 2 = 2 ⋅ 3 ⋅ 7 ⋅ 1 7 ⋅ 2 3
7 7 7
split multiplicative
8 8 8
11730 = 2 ⋅ 3 ⋅ 5 ⋅ 17 ⋅ 23 11730 = 2 \cdot 3 \cdot 5 \cdot 17 \cdot 23 1 1 7 3 0 = 2 ⋅ 3 ⋅ 5 ⋅ 1 7 ⋅ 2 3
17 17 1 7
nonsplit multiplicative
18 18 1 8
4830 = 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 23 4830 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 23 4 8 3 0 = 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 2 3
23 23 2 3
split multiplicative
24 24 2 4
3570 = 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 17 3570 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 3 5 7 0 = 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 1 7
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2 and 4.
Its isogeny class 82110x
consists of 4 curves linked by isogenies of
degrees dividing 4.
This elliptic curve is its own minimal quadratic twist .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z \cong \Z/{2}\Z ≅ Z / 2 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( 8211 ) \Q(\sqrt{8211}) Q ( 8 2 1 1 )
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
2 2 2
Q ( 17 ) \Q(\sqrt{17}) Q ( 1 7 )
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
2 2 2
Q ( 483 ) \Q(\sqrt{483}) Q ( 4 8 3 )
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
4 4 4
Q ( 17 , 483 ) \Q(\sqrt{17}, \sqrt{483}) Q ( 1 7 , 4 8 3 )
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
8 8 8
deg 8
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
8 8 8
deg 8
Z / 6 Z \Z/6\Z Z / 6 Z
not in database
16 16 1 6
deg 16
Z / 4 Z ⊕ Z / 4 Z \Z/4\Z \oplus \Z/4\Z Z / 4 Z ⊕ Z / 4 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 8 Z \Z/2\Z \oplus \Z/8\Z Z / 2 Z ⊕ Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 8 Z \Z/2\Z \oplus \Z/8\Z Z / 2 Z ⊕ Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
16 16 1 6
deg 16
Z / 12 Z \Z/12\Z Z / 1 2 Z
not in database
16 16 1 6
deg 16
Z / 12 Z \Z/12\Z Z / 1 2 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
p p p -adic regulators
p p p -adic regulators are not yet computed for curves that are not Γ 0 \Gamma_0 Γ 0 -optimal.