Properties

Label 82110x4
Conductor 8211082110
Discriminant 738990000738990000
j-invariant 27732922385367321140481289738990000 \frac{27732922385367321140481289}{738990000}
CM no
Rank 22
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x36306049x+6094619972y^2+xy+y=x^3-6306049x+6094619972 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x36306049xz2+6094619972z3y^2z+xyz+yz^2=x^3-6306049xz^2+6094619972z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x38172638883x+284375107341918y^2=x^3-8172638883x+284375107341918 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 1, -6306049, 6094619972])
 
gp: E = ellinit([1, 0, 1, -6306049, 6094619972])
 
magma: E := EllipticCurve([1, 0, 1, -6306049, 6094619972]);
 
oscar: E = elliptic_curve([1, 0, 1, -6306049, 6094619972])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZZ/2Z\Z \oplus \Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1450,709)(1450, -709)1.13944625424276742852538029521.1394462542427674285253802952\infty
(1540,5243)(1540, 5243)4.49840767500993789438060282544.4984076750099378943806028254\infty
(5799/4,5803/8)(5799/4, -5803/8)0022

Integral points

(1450,709) \left(1450, -709\right) , (1450,742) \left(1450, -742\right) , (1456,316) \left(1456, -316\right) , (1456,1141) \left(1456, -1141\right) , (1540,5243) \left(1540, 5243\right) , (1540,6784) \left(1540, -6784\right) , (2206,52934) \left(2206, 52934\right) , (2206,55141) \left(2206, -55141\right) , (2856,105259) \left(2856, 105259\right) , (2856,108116) \left(2856, -108116\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  82110 82110  = 235717232 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  738990000738990000 = 243354717232^{4} \cdot 3^{3} \cdot 5^{4} \cdot 7 \cdot 17 \cdot 23
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  27732922385367321140481289738990000 \frac{27732922385367321140481289}{738990000}  = 2433547117123130269032932^{-4} \cdot 3^{-3} \cdot 5^{-4} \cdot 7^{-1} \cdot 17^{-1} \cdot 23^{-1} \cdot 302690329^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.14217207703065223226662674942.1421720770306522322666267494
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 2.14217207703065223226662674942.1421720770306522322666267494
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.97419690027811830.9741969002781183
Szpiro ratio: σm\sigma_{m} ≈ 5.1772375214229765.177237521422976

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 2 2
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 2 2
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 5.11696589910197103230183804925.1169658991019710323018380492
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.578672359969458647655788103720.57867235996945864765578810372
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 12 12  = 232111 2\cdot3\cdot2\cdot1\cdot1\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(2)(E,1)/2! L^{(2)}(E,1)/2! ≈ 8.88314019814974119836785161938.8831401981497411983678516193
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

8.883140198L(2)(E,1)/2!=?#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.5786725.11696612228.883140198\displaystyle 8.883140198 \approx L^{(2)}(E,1)/2! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.578672 \cdot 5.116966 \cdot 12}{2^2} \approx 8.883140198

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 82110.2.a.v

qq2+q3+q4q5q6+q7q8+q9+q104q11+q126q13q14q15+q16q17q184q19+O(q20) q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + q^{7} - q^{8} + q^{9} + q^{10} - 4 q^{11} + q^{12} - 6 q^{13} - q^{14} - q^{15} + q^{16} - q^{17} - q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 1769472
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 6 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I4I_{4} nonsplit multiplicative 1 1 4 4
33 33 I3I_{3} split multiplicative -1 1 3 3
55 22 I4I_{4} nonsplit multiplicative 1 1 4 4
77 11 I1I_{1} split multiplicative -1 1 1 1
1717 11 I1I_{1} nonsplit multiplicative 1 1 1 1
2323 11 I1I_{1} split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 4.6.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[234608, 3, 187685, 2], [1, 0, 8, 1], [328433, 8, 328432, 9], [1, 8, 0, 1], [7, 6, 328434, 328435], [1, 4, 4, 17], [285608, 3, 14285, 2], [41056, 205283, 41059, 41088], [41059, 41058, 123178, 287395], [131377, 8, 197068, 33], [19324, 1, 193223, 6], [218968, 3, 218965, 2]]
 
GL(2,Integers(328440)).subgroup(gens)
 
Gens := [[234608, 3, 187685, 2], [1, 0, 8, 1], [328433, 8, 328432, 9], [1, 8, 0, 1], [7, 6, 328434, 328435], [1, 4, 4, 17], [285608, 3, 14285, 2], [41056, 205283, 41059, 41088], [41059, 41058, 123178, 287395], [131377, 8, 197068, 33], [19324, 1, 193223, 6], [218968, 3, 218965, 2]];
 
sub<GL(2,Integers(328440))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 328440=233571723 328440 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 , index 4848, genus 00, and generators

(23460831876852),(1081),(32843383284329),(1801),(76328434328435),(14417),(2856083142852),(410562052834105941088),(4105941058123178287395),(131377819706833),(1932411932236),(21896832189652)\left(\begin{array}{rr} 234608 & 3 \\ 187685 & 2 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 328433 & 8 \\ 328432 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 328434 & 328435 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 285608 & 3 \\ 14285 & 2 \end{array}\right),\left(\begin{array}{rr} 41056 & 205283 \\ 41059 & 41088 \end{array}\right),\left(\begin{array}{rr} 41059 & 41058 \\ 123178 & 287395 \end{array}\right),\left(\begin{array}{rr} 131377 & 8 \\ 197068 & 33 \end{array}\right),\left(\begin{array}{rr} 19324 & 1 \\ 193223 & 6 \end{array}\right),\left(\begin{array}{rr} 218968 & 3 \\ 218965 & 2 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[328440])K:=\Q(E[328440]) is a degree-3110776518217826304031107765182178263040 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/328440Z)\GL_2(\Z/328440\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 8211=371723 8211 = 3 \cdot 7 \cdot 17 \cdot 23
33 split multiplicative 44 27370=2571723 27370 = 2 \cdot 5 \cdot 7 \cdot 17 \cdot 23
55 nonsplit multiplicative 66 16422=2371723 16422 = 2 \cdot 3 \cdot 7 \cdot 17 \cdot 23
77 split multiplicative 88 11730=2351723 11730 = 2 \cdot 3 \cdot 5 \cdot 17 \cdot 23
1717 nonsplit multiplicative 1818 4830=235723 4830 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 23
2323 split multiplicative 2424 3570=235717 3570 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 82110x consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(8211)\Q(\sqrt{8211}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(17)\Q(\sqrt{17}) Z/4Z\Z/4\Z not in database
22 Q(483)\Q(\sqrt{483}) Z/4Z\Z/4\Z not in database
44 Q(17,483)\Q(\sqrt{17}, \sqrt{483}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/8Z\Z/8\Z not in database
88 deg 8 Z/8Z\Z/8\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit split nonsplit split ord ord nonsplit ord split ord ord ord ord ord ord
λ\lambda-invariant(s) 8 3 2 3 2 2 2 2 3 2 2 2 2 2 2
μ\mu-invariant(s) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.