Properties

Label 825.a
Number of curves $4$
Conductor $825$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 825.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
825.a1 825b3 \([1, 0, 0, -3663, 84942]\) \(347873904937/395307\) \(6176671875\) \([2]\) \(768\) \(0.79209\)  
825.a2 825b2 \([1, 0, 0, -288, 567]\) \(169112377/88209\) \(1378265625\) \([2, 2]\) \(384\) \(0.44551\)  
825.a3 825b1 \([1, 0, 0, -163, -808]\) \(30664297/297\) \(4640625\) \([2]\) \(192\) \(0.098940\) \(\Gamma_0(N)\)-optimal
825.a4 825b4 \([1, 0, 0, 1087, 4692]\) \(9090072503/5845851\) \(-91341421875\) \([2]\) \(768\) \(0.79209\)  

Rank

sage: E.rank()
 

The elliptic curves in class 825.a have rank \(1\).

Complex multiplication

The elliptic curves in class 825.a do not have complex multiplication.

Modular form 825.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} - q^{4} - q^{6} - 4 q^{7} + 3 q^{8} + q^{9} + q^{11} - q^{12} + 2 q^{13} + 4 q^{14} - q^{16} + 2 q^{17} - q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.