Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 825.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
825.a1 | 825b3 | \([1, 0, 0, -3663, 84942]\) | \(347873904937/395307\) | \(6176671875\) | \([2]\) | \(768\) | \(0.79209\) | |
825.a2 | 825b2 | \([1, 0, 0, -288, 567]\) | \(169112377/88209\) | \(1378265625\) | \([2, 2]\) | \(384\) | \(0.44551\) | |
825.a3 | 825b1 | \([1, 0, 0, -163, -808]\) | \(30664297/297\) | \(4640625\) | \([2]\) | \(192\) | \(0.098940\) | \(\Gamma_0(N)\)-optimal |
825.a4 | 825b4 | \([1, 0, 0, 1087, 4692]\) | \(9090072503/5845851\) | \(-91341421875\) | \([2]\) | \(768\) | \(0.79209\) |
Rank
sage: E.rank()
The elliptic curves in class 825.a have rank \(1\).
Complex multiplication
The elliptic curves in class 825.a do not have complex multiplication.Modular form 825.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.