Show commands:
SageMath
E = EllipticCurve("l1")
E.isogeny_class()
Elliptic curves in class 8280.l
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
8280.l1 | 8280e2 | \([0, 0, 0, -8643, 254558]\) | \(47825527682/8926875\) | \(13327752960000\) | \([2]\) | \(18432\) | \(1.2364\) | |
8280.l2 | 8280e1 | \([0, 0, 0, 1077, 23222]\) | \(185073116/419175\) | \(-312912460800\) | \([2]\) | \(9216\) | \(0.88986\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 8280.l have rank \(0\).
Complex multiplication
The elliptic curves in class 8280.l do not have complex multiplication.Modular form 8280.2.a.l
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.