sage:E = EllipticCurve("l1")
E.isogeny_class()
Elliptic curves in class 8280.l
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
8280.l1 |
8280e2 |
[0,0,0,−8643,254558] |
47825527682/8926875 |
13327752960000 |
[2] |
18432 |
1.2364
|
|
8280.l2 |
8280e1 |
[0,0,0,1077,23222] |
185073116/419175 |
−312912460800 |
[2] |
9216 |
0.88986
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 8280.l have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
5 | 1+T |
23 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1−2T+7T2 |
1.7.ac
|
11 |
1−2T+11T2 |
1.11.ac
|
13 |
1−2T+13T2 |
1.13.ac
|
17 |
1−8T+17T2 |
1.17.ai
|
19 |
1−4T+19T2 |
1.19.ae
|
29 |
1+2T+29T2 |
1.29.c
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 8280.l do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.