Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 8280a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
8280.k1 | 8280a1 | \([0, 0, 0, -18, 17]\) | \(1492992/575\) | \(248400\) | \([2]\) | \(896\) | \(-0.26571\) | \(\Gamma_0(N)\)-optimal |
8280.k2 | 8280a2 | \([0, 0, 0, 57, 122]\) | \(2963088/2645\) | \(-18282240\) | \([2]\) | \(1792\) | \(0.080860\) |
Rank
sage: E.rank()
The elliptic curves in class 8280a have rank \(1\).
Complex multiplication
The elliptic curves in class 8280a do not have complex multiplication.Modular form 8280.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.