Properties

Label 8280a2
Conductor 82808280
Discriminant 18282240-18282240
j-invariant 29630882645 \frac{2963088}{2645}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+57x+122y^2=x^3+57x+122 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+57xz2+122z3y^2z=x^3+57xz^2+122z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+57x+122y^2=x^3+57x+122 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, 57, 122])
 
gp: E = ellinit([0, 0, 0, 57, 122])
 
magma: E := EllipticCurve([0, 0, 0, 57, 122]);
 
oscar: E = elliptic_curve([0, 0, 0, 57, 122])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1,8)(-1, 8)1.45411783032017233164899602901.4541178303201723316489960290\infty
(2,0)(-2, 0)0022

Integral points

(2,0) \left(-2, 0\right) , (1,±8)(-1,\pm 8), (67,±552)(67,\pm 552) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  8280 8280  = 23325232^{3} \cdot 3^{2} \cdot 5 \cdot 23
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  18282240-18282240 = 128335232-1 \cdot 2^{8} \cdot 3^{3} \cdot 5 \cdot 23^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  29630882645 \frac{2963088}{2645}  = 2433511932322^{4} \cdot 3^{3} \cdot 5^{-1} \cdot 19^{3} \cdot 23^{-2}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.0808596375521182213389200982660.080859637552118221338920098266
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.65589155498820607445471262527-0.65589155498820607445471262527
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.74172975541584960.7417297554158496
Szpiro ratio: σm\sigma_{m} ≈ 2.63176836134599372.6317683613459937

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 1.45411783032017233164899602901.4541178303201723316489960290
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 1.42096077707291633706902176451.4209607770729163370690217645
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 8 8  = 2212 2\cdot2\cdot1\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 4.13248880425467036201511874134.1324888042546703620151187413
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.132488804L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.4209611.4541188224.132488804\displaystyle 4.132488804 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.420961 \cdot 1.454118 \cdot 8}{2^2} \approx 4.132488804

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   8280.2.a.k

qq5+2q74q11+2q13+2q178q19+O(q20) q - q^{5} + 2 q^{7} - 4 q^{11} + 2 q^{13} + 2 q^{17} - 8 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 1792
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I1I_{1}^{*} additive 1 3 8 0
33 22 IIIIII additive 1 2 3 0
55 11 I1I_{1} nonsplit multiplicative 1 1 1 1
2323 22 I2I_{2} nonsplit multiplicative 1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 4, 1], [3, 4, 8, 11], [1, 2, 2, 5], [1, 4, 0, 1], [1377, 4, 1376, 5], [1201, 4, 1022, 9], [1037, 346, 344, 1035], [464, 1, 919, 0], [554, 1, 1103, 0]]
 
GL(2,Integers(1380)).subgroup(gens)
 
Gens := [[1, 0, 4, 1], [3, 4, 8, 11], [1, 2, 2, 5], [1, 4, 0, 1], [1377, 4, 1376, 5], [1201, 4, 1022, 9], [1037, 346, 344, 1035], [464, 1, 919, 0], [554, 1, 1103, 0]];
 
sub<GL(2,Integers(1380))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1380=223523 1380 = 2^{2} \cdot 3 \cdot 5 \cdot 23 , index 1212, genus 00, and generators

(1041),(34811),(1225),(1401),(1377413765),(1201410229),(10373463441035),(46419190),(554111030)\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1377 & 4 \\ 1376 & 5 \end{array}\right),\left(\begin{array}{rr} 1201 & 4 \\ 1022 & 9 \end{array}\right),\left(\begin{array}{rr} 1037 & 346 \\ 344 & 1035 \end{array}\right),\left(\begin{array}{rr} 464 & 1 \\ 919 & 0 \end{array}\right),\left(\begin{array}{rr} 554 & 1 \\ 1103 & 0 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1380])K:=\Q(E[1380]) is a degree-4924440576049244405760 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1380Z)\GL_2(\Z/1380\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 15=35 15 = 3 \cdot 5
33 additive 66 920=23523 920 = 2^{3} \cdot 5 \cdot 23
55 nonsplit multiplicative 66 1656=233223 1656 = 2^{3} \cdot 3^{2} \cdot 23
2323 nonsplit multiplicative 2424 360=23325 360 = 2^{3} \cdot 3^{2} \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 8280a consists of 2 curves linked by isogenies of degree 2.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(15)\Q(\sqrt{-15}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.2.1142640.2 Z/4Z\Z/4\Z not in database
88 8.0.32640654240000.2 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.96410250000.8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.2.391687850880000.7 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add add nonsplit ord ord ord ord ord nonsplit ord ord ord ord ord ord
λ\lambda-invariant(s) - - 3 1 1 1 1 1 1 1 1 1 1 1 1
μ\mu-invariant(s) - - 0 0 0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.