Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 8280b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
8280.h2 | 8280b1 | \([0, 0, 0, -123, 518]\) | \(7443468/115\) | \(3179520\) | \([2]\) | \(1280\) | \(0.049019\) | \(\Gamma_0(N)\)-optimal |
8280.h1 | 8280b2 | \([0, 0, 0, -243, -658]\) | \(28697814/13225\) | \(731289600\) | \([2]\) | \(2560\) | \(0.39559\) |
Rank
sage: E.rank()
The elliptic curves in class 8280b have rank \(0\).
Complex multiplication
The elliptic curves in class 8280b do not have complex multiplication.Modular form 8280.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.