Properties

Label 8280b
Number of curves 22
Conductor 82808280
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Elliptic curves in class 8280b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8280.h2 8280b1 [0,0,0,123,518][0, 0, 0, -123, 518] 7443468/1157443468/115 31795203179520 [2][2] 12801280 0.0490190.049019 Γ0(N)\Gamma_0(N)-optimal
8280.h1 8280b2 [0,0,0,243,658][0, 0, 0, -243, -658] 28697814/1322528697814/13225 731289600731289600 [2][2] 25602560 0.395590.39559  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 8280b have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
3311
551+T1 + T
23231T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 1+2T+7T2 1 + 2 T + 7 T^{2} 1.7.c
1111 1+11T2 1 + 11 T^{2} 1.11.a
1313 1+2T+13T2 1 + 2 T + 13 T^{2} 1.13.c
1717 1+6T+17T2 1 + 6 T + 17 T^{2} 1.17.g
1919 1+19T2 1 + 19 T^{2} 1.19.a
2929 1+29T2 1 + 29 T^{2} 1.29.a
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8280b do not have complex multiplication.

Modular form 8280.2.a.b

Copy content sage:E.q_eigenform(10)
 
qq5+4q11+4q13+4q17+4q19+O(q20)q - q^{5} + 4 q^{11} + 4 q^{13} + 4 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.