sage:E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 8280b
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
8280.h2 |
8280b1 |
[0,0,0,−123,518] |
7443468/115 |
3179520 |
[2] |
1280 |
0.049019
|
Γ0(N)-optimal |
8280.h1 |
8280b2 |
[0,0,0,−243,−658] |
28697814/13225 |
731289600 |
[2] |
2560 |
0.39559
|
|
sage:E.rank()
The elliptic curves in class 8280b have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
5 | 1+T |
23 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1+2T+7T2 |
1.7.c
|
11 |
1+11T2 |
1.11.a
|
13 |
1+2T+13T2 |
1.13.c
|
17 |
1+6T+17T2 |
1.17.g
|
19 |
1+19T2 |
1.19.a
|
29 |
1+29T2 |
1.29.a
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 8280b do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.