Properties

Label 8280f
Number of curves $1$
Conductor $8280$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 8280f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8280.a1 8280f1 \([0, 0, 0, 68532, -30368108]\) \(190737654201344/2245153696875\) \(-418999563525600000\) \([]\) \(76800\) \(2.0623\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 8280f1 has rank \(0\).

Complex multiplication

The elliptic curves in class 8280f do not have complex multiplication.

Modular form 8280.2.a.f

sage: E.q_eigenform(10)
 
\(q - q^{5} - 3 q^{7} + 4 q^{11} - 3 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display