Properties

Label 8280g
Number of curves $2$
Conductor $8280$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("g1")
 
E.isogeny_class()
 

Elliptic curves in class 8280g

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8280.f2 8280g1 \([0, 0, 0, -288363, -62154218]\) \(-3552342505518244/179863605135\) \(-134267461778856960\) \([2]\) \(84480\) \(2.0471\) \(\Gamma_0(N)\)-optimal
8280.f1 8280g2 \([0, 0, 0, -4668483, -3882494882]\) \(7536914291382802562/17961229575\) \(26815972065638400\) \([2]\) \(168960\) \(2.3937\)  

Rank

sage: E.rank()
 

The elliptic curves in class 8280g have rank \(1\).

Complex multiplication

The elliptic curves in class 8280g do not have complex multiplication.

Modular form 8280.2.a.g

sage: E.q_eigenform(10)
 
\(q - q^{5} - 2 q^{11} - 6 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.