Properties

Label 8280g
Number of curves 22
Conductor 82808280
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("g1")
 
E.isogeny_class()
 

Elliptic curves in class 8280g

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8280.f2 8280g1 [0,0,0,288363,62154218][0, 0, 0, -288363, -62154218] 3552342505518244/179863605135-3552342505518244/179863605135 134267461778856960-134267461778856960 [2][2] 8448084480 2.04712.0471 Γ0(N)\Gamma_0(N)-optimal
8280.f1 8280g2 [0,0,0,4668483,3882494882][0, 0, 0, -4668483, -3882494882] 7536914291382802562/179612295757536914291382802562/17961229575 2681597206563840026815972065638400 [2][2] 168960168960 2.39372.3937  

Rank

sage: E.rank()
 

The elliptic curves in class 8280g have rank 11.

Complex multiplication

The elliptic curves in class 8280g do not have complex multiplication.

Modular form 8280.2.a.g

sage: E.q_eigenform(10)
 
qq52q116q17+8q19+O(q20)q - q^{5} - 2 q^{11} - 6 q^{17} + 8 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.