Show commands:
SageMath
E = EllipticCurve("g1")
E.isogeny_class()
Elliptic curves in class 8280g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
8280.f2 | 8280g1 | \([0, 0, 0, -288363, -62154218]\) | \(-3552342505518244/179863605135\) | \(-134267461778856960\) | \([2]\) | \(84480\) | \(2.0471\) | \(\Gamma_0(N)\)-optimal |
8280.f1 | 8280g2 | \([0, 0, 0, -4668483, -3882494882]\) | \(7536914291382802562/17961229575\) | \(26815972065638400\) | \([2]\) | \(168960\) | \(2.3937\) |
Rank
sage: E.rank()
The elliptic curves in class 8280g have rank \(1\).
Complex multiplication
The elliptic curves in class 8280g do not have complex multiplication.Modular form 8280.2.a.g
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.