Show commands:
SageMath
E = EllipticCurve("o1")
E.isogeny_class()
Elliptic curves in class 8280o
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
8280.c2 | 8280o1 | \([0, 0, 0, -783, 10098]\) | \(-10536048/2645\) | \(-13327752960\) | \([2]\) | \(3840\) | \(0.66054\) | \(\Gamma_0(N)\)-optimal |
8280.c1 | 8280o2 | \([0, 0, 0, -13203, 583902]\) | \(12628458252/575\) | \(11589350400\) | \([2]\) | \(7680\) | \(1.0071\) |
Rank
sage: E.rank()
The elliptic curves in class 8280o have rank \(1\).
Complex multiplication
The elliptic curves in class 8280o do not have complex multiplication.Modular form 8280.2.a.o
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.