Properties

Label 8280o
Number of curves $2$
Conductor $8280$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("o1")
 
E.isogeny_class()
 

Elliptic curves in class 8280o

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8280.c2 8280o1 \([0, 0, 0, -783, 10098]\) \(-10536048/2645\) \(-13327752960\) \([2]\) \(3840\) \(0.66054\) \(\Gamma_0(N)\)-optimal
8280.c1 8280o2 \([0, 0, 0, -13203, 583902]\) \(12628458252/575\) \(11589350400\) \([2]\) \(7680\) \(1.0071\)  

Rank

sage: E.rank()
 

The elliptic curves in class 8280o have rank \(1\).

Complex multiplication

The elliptic curves in class 8280o do not have complex multiplication.

Modular form 8280.2.a.o

sage: E.q_eigenform(10)
 
\(q - q^{5} - 2 q^{7} - 2 q^{13} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.