Properties

Label 8280t1
Conductor 82808280
Discriminant 1.501×1014-1.501\times 10^{14}
j-invariant 1366664500224804542875 \frac{1366664500224}{804542875}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+13212x+76788y^2=x^3+13212x+76788 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+13212xz2+76788z3y^2z=x^3+13212xz^2+76788z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+13212x+76788y^2=x^3+13212x+76788 Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([0, 0, 0, 13212, 76788])
 
Copy content gp:E = ellinit([0, 0, 0, 13212, 76788])
 
Copy content magma:E := EllipticCurve([0, 0, 0, 13212, 76788]);
 
Copy content oscar:E = elliptic_curve([0, 0, 0, 13212, 76788])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(36,774)(36, 774)3.12567136750103296076862930983.1256713675010329607686293098\infty

Integral points

(36,±774)(36,\pm 774) Copy content Toggle raw display

Copy content comment:Integral points
 
Copy content sage:E.integral_points()
 
Copy content magma:IntegralPoints(E);
 

Invariants

Conductor: NN  =  8280 8280  = 23325232^{3} \cdot 3^{2} \cdot 5 \cdot 23
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: Δ\Delta  =  150147009504000-150147009504000 = 1283653235-1 \cdot 2^{8} \cdot 3^{6} \cdot 5^{3} \cdot 23^{5}
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: jj  =  1366664500224804542875 \frac{1366664500224}{804542875}  = 210335323536732^{10} \cdot 3^{3} \cdot 5^{-3} \cdot 23^{-5} \cdot 367^{3}
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.40959825927650408651819238351.4095982592765040865181923835
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.398193994569152367875748350730.39819399456915236787574835073
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.21974738920252411.2197473892025241
Szpiro ratio: σm\sigma_{m} ≈ 4.4426989867231874.442698986723187

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 3.12567136750103296076862930983.1256713675010329607686293098
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: Ω\Omega ≈ 0.351417877262024186279649161330.35141787726202418627964916133
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 2211 2\cdot2\cdot1\cdot1
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 4.39366718794360518010956956994.3936671879436051801095695699
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

4.393667188L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.3514183.1256714124.393667188\begin{aligned} 4.393667188 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.351418 \cdot 3.125671 \cdot 4}{1^2} \\ & \approx 4.393667188\end{aligned}

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([0, 0, 0, 13212, 76788]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([0, 0, 0, 13212, 76788]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   8280.2.a.j

qq5+q7+6q112q13+3q176q19+O(q20) q - q^{5} + q^{7} + 6 q^{11} - 2 q^{13} + 3 q^{17} - 6 q^{19} + O(q^{20}) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 23040
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I1I_{1}^{*} additive -1 3 8 0
33 22 I0I_0^{*} additive -1 2 6 0
55 11 I3I_{3} nonsplit multiplicative 1 1 3 3
2323 11 I5I_{5} nonsplit multiplicative 1 1 5 5

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[1, 2, 0, 1], [229, 2, 228, 3], [51, 2, 51, 3], [1, 0, 2, 1], [1, 1, 229, 0], [47, 2, 47, 3]] GL(2,Integers(230)).subgroup(gens)
 
Copy content magma:Gens := [[1, 2, 0, 1], [229, 2, 228, 3], [51, 2, 51, 3], [1, 0, 2, 1], [1, 1, 229, 0], [47, 2, 47, 3]]; sub<GL(2,Integers(230))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 230=2523 230 = 2 \cdot 5 \cdot 23 , index 22, genus 00, and generators

(1201),(22922283),(512513),(1021),(112290),(472473)\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 229 & 2 \\ 228 & 3 \end{array}\right),\left(\begin{array}{rr} 51 & 2 \\ 51 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 229 & 0 \end{array}\right),\left(\begin{array}{rr} 47 & 2 \\ 47 & 3 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[230])K:=\Q(E[230]) is a degree-384721920384721920 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/230Z)\GL_2(\Z/230\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 1035=32523 1035 = 3^{2} \cdot 5 \cdot 23
33 additive 66 184=2323 184 = 2^{3} \cdot 23
55 nonsplit multiplicative 66 72=2332 72 = 2^{3} \cdot 3^{2}
2323 nonsplit multiplicative 2424 360=23325 360 = 2^{3} \cdot 3^{2} \cdot 5

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 8280t consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 920a1, its twist by 3-3.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.460.1 Z/2Z\Z/2\Z not in database
66 6.0.24334000.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.626700561408.6 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add add nonsplit ord ord ord ord ord nonsplit ord ord ord ord ord ord
λ\lambda-invariant(s) - - 1 1 1 1 1 1 1 1 1 1 1 1 1
μ\mu-invariant(s) - - 0 0 0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.