Properties

Label 8379n2
Conductor 83798379
Discriminant 278654127129278654127129
j-invariant 306642973249 \frac{30664297}{3249}
CM no
Rank 22
Torsion structure Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3x22876x+54366y^2+xy+y=x^3-x^2-2876x+54366 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3x2z2876xz2+54366z3y^2z+xyz+yz^2=x^3-x^2z-2876xz^2+54366z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x346011x+3433430y^2=x^3-46011x+3433430 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 1, -2876, 54366])
 
gp: E = ellinit([1, -1, 1, -2876, 54366])
 
magma: E := EllipticCurve([1, -1, 1, -2876, 54366]);
 
oscar: E = elliptic_curve([1, -1, 1, -2876, 54366])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZZ/2ZZ/2Z\Z \oplus \Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(2,219)(2, 219)0.921856212020370781503227104060.92185621202037078150322710406\infty
(51,170)(51, 170)2.04104269598449329914695419932.0410426959844932991469541993\infty
(61,30)(-61, 30)0022
(23,12)(23, -12)0022

Integral points

(61,30) \left(-61, 30\right) , (52,273) \left(-52, 273\right) , (52,222) \left(-52, -222\right) , (4,258) \left(-4, 258\right) , (4,255) \left(-4, -255\right) , (2,219) \left(2, 219\right) , (2,222) \left(2, -222\right) , (20,57) \left(20, 57\right) , (20,78) \left(20, -78\right) , (23,12) \left(23, -12\right) , (39,0) \left(39, 0\right) , (39,40) \left(39, -40\right) , (51,170) \left(51, 170\right) , (51,222) \left(51, -222\right) , (72,429) \left(72, 429\right) , (72,502) \left(72, -502\right) , (86,618) \left(86, 618\right) , (86,705) \left(86, -705\right) , (167,1968) \left(167, 1968\right) , (167,2136) \left(167, -2136\right) , (464,9690) \left(464, 9690\right) , (464,10155) \left(464, -10155\right) , (870,25167) \left(870, 25167\right) , (870,26038) \left(870, -26038\right) , (6323,499578) \left(6323, 499578\right) , (6323,505902) \left(6323, -505902\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  8379 8379  = 3272193^{2} \cdot 7^{2} \cdot 19
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  278654127129278654127129 = 38761923^{8} \cdot 7^{6} \cdot 19^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  306642973249 \frac{30664297}{3249}  = 3219231333^{-2} \cdot 19^{-2} \cdot 313^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.930678966378912749872250559580.93067896637891274987225055958
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.59158225248279874837804843060-0.59158225248279874837804843060
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.90726686079402850.9072668607940285
Szpiro ratio: σm\sigma_{m} ≈ 3.93045969521810353.9304596952181035

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 2 2
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 2 2
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 1.84194401665104535435805244951.8419440166510453543580524495
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.947329488490320934282590530540.94732948849032093428259053054
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 32 32  = 22222 2^{2}\cdot2^{2}\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(2)(E,1)/2! L^{(2)}(E,1)/2! ≈ 3.48985576624368396269872088553.4898557662436839626987208855
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.489855766L(2)(E,1)/2!=?#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.9473291.84194432423.489855766\displaystyle 3.489855766 \approx L^{(2)}(E,1)/2! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.947329 \cdot 1.841944 \cdot 32}{4^2} \approx 3.489855766

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   8379.2.a.e

qq2q42q5+3q8+2q106q13q166q17+q19+O(q20) q - q^{2} - q^{4} - 2 q^{5} + 3 q^{8} + 2 q^{10} - 6 q^{13} - q^{16} - 6 q^{17} + q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 9216
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 44 I2I_{2}^{*} additive -1 2 8 2
77 44 I0I_0^{*} additive -1 2 6 0
1919 22 I2I_{2} split multiplicative -1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 2.6.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1485, 1372, 686, 687], [1, 4, 0, 1], [1063, 910, 0, 1595], [1, 0, 4, 1], [519, 686, 490, 911], [683, 0, 0, 1595], [1593, 4, 1592, 5]]
 
GL(2,Integers(1596)).subgroup(gens)
 
Gens := [[1485, 1372, 686, 687], [1, 4, 0, 1], [1063, 910, 0, 1595], [1, 0, 4, 1], [519, 686, 490, 911], [683, 0, 0, 1595], [1593, 4, 1592, 5]];
 
sub<GL(2,Integers(1596))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1596=223719 1596 = 2^{2} \cdot 3 \cdot 7 \cdot 19 , index 4848, genus 00, and generators

(14851372686687),(1401),(106391001595),(1041),(519686490911),(683001595),(1593415925)\left(\begin{array}{rr} 1485 & 1372 \\ 686 & 687 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1063 & 910 \\ 0 & 1595 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 519 & 686 \\ 490 & 911 \end{array}\right),\left(\begin{array}{rr} 683 & 0 \\ 0 & 1595 \end{array}\right),\left(\begin{array}{rr} 1593 & 4 \\ 1592 & 5 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1596])K:=\Q(E[1596]) is a degree-2382815232023828152320 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1596Z)\GL_2(\Z/1596\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 good 22 441=3272 441 = 3^{2} \cdot 7^{2}
33 additive 88 931=7219 931 = 7^{2} \cdot 19
77 additive 2626 171=3219 171 = 3^{2} \cdot 19
1919 split multiplicative 2020 441=3272 441 = 3^{2} \cdot 7^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 8379n consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 57b1, its twist by 2121.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2ZZ/2Z\cong \Z/{2}\Z \oplus \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
44 Q(7,57)\Q(\sqrt{7}, \sqrt{57}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(19,21)\Q(\sqrt{19}, \sqrt{-21}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(3,7)\Q(\sqrt{-3}, \sqrt{-7}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.2.55429424022987.5 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 16.0.42098158229810084367630336.1 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ord add ord add ss ord ord split ord ord ord ord ord ord ord
λ\lambda-invariant(s) 5 - 2 - 2,2 2 2 3 2 2 2 2 2 2 2
μ\mu-invariant(s) 0 - 0 - 0,0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.