Properties

Label 84474ce
Number of curves 22
Conductor 8447484474
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("ce1")
 
E.isogeny_class()
 

Elliptic curves in class 84474ce

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
84474.by2 84474ce1 [1,1,1,8732,482527][1, -1, 1, -8732, 482527] 2146689/1664-2146689/1664 57069288222336-57069288222336 [][] 183456183456 1.33841.3384 Γ0(N)\Gamma_0(N)-optimal
84474.by1 84474ce2 [1,1,1,691022,242412713][1, -1, 1, -691022, -242412713] 1064019559329/125497034-1064019559329/125497034 4304102406486959466-4304102406486959466 [][] 12841921284192 2.31132.3113  

Rank

sage: E.rank()
 

The elliptic curves in class 84474ce have rank 11.

Complex multiplication

The elliptic curves in class 84474ce do not have complex multiplication.

Modular form 84474.2.a.ce

sage: E.q_eigenform(10)
 
q+q2+q4+q5+q7+q8+q10+2q11+q13+q14+q16+3q17+O(q20)q + q^{2} + q^{4} + q^{5} + q^{7} + q^{8} + q^{10} + 2 q^{11} + q^{13} + q^{14} + q^{16} + 3 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1771)\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.