Show commands:
SageMath
E = EllipticCurve("ce1")
E.isogeny_class()
Elliptic curves in class 84474ce
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
84474.by2 | 84474ce1 | \([1, -1, 1, -8732, 482527]\) | \(-2146689/1664\) | \(-57069288222336\) | \([]\) | \(183456\) | \(1.3384\) | \(\Gamma_0(N)\)-optimal |
84474.by1 | 84474ce2 | \([1, -1, 1, -691022, -242412713]\) | \(-1064019559329/125497034\) | \(-4304102406486959466\) | \([]\) | \(1284192\) | \(2.3113\) |
Rank
sage: E.rank()
The elliptic curves in class 84474ce have rank \(1\).
Complex multiplication
The elliptic curves in class 84474ce do not have complex multiplication.Modular form 84474.2.a.ce
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.