Properties

Label 84640.w
Number of curves 11
Conductor 8464084640
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("w1") E.isogeny_class()
 

Elliptic curves in class 84640.w

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
84640.w1 84640s1 [0,1,0,52195,1155078475][0, -1, 0, 52195, -1155078475] 25934336/95054687525934336/950546875 576368851668160000000-576368851668160000000 [][] 21288962128896 2.66252.6625 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 84640.w1 has rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
551T1 - T
232311
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 12T+3T2 1 - 2 T + 3 T^{2} 1.3.ac
77 1T+7T2 1 - T + 7 T^{2} 1.7.ab
1111 12T+11T2 1 - 2 T + 11 T^{2} 1.11.ac
1313 1+13T2 1 + 13 T^{2} 1.13.a
1717 1T+17T2 1 - T + 17 T^{2} 1.17.ab
1919 1+4T+19T2 1 + 4 T + 19 T^{2} 1.19.e
2929 1+5T+29T2 1 + 5 T + 29 T^{2} 1.29.f
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 84640.w do not have complex multiplication.

Modular form 84640.2.a.w

Copy content sage:E.q_eigenform(10)
 
q+2q3+q5+q7+q9+2q11+2q15+q174q19+O(q20)q + 2 q^{3} + q^{5} + q^{7} + q^{9} + 2 q^{11} + 2 q^{15} + q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display