Properties

Label 8550i
Number of curves 33
Conductor 85508550
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("i1")
 
E.isogeny_class()
 

Elliptic curves in class 8550i

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8550.m2 8550i1 [1,1,0,3492,78584][1, -1, 0, -3492, -78584] 413493625/152-413493625/152 1731375000-1731375000 [][] 86408640 0.740580.74058 Γ0(N)\Gamma_0(N)-optimal
8550.m3 8550i2 [1,1,0,2133,302459][1, -1, 0, 2133, -302459] 94196375/351180894196375/3511808 40001688000000-40001688000000 [][] 2592025920 1.28991.2899  
8550.m1 8550i3 [1,1,0,19242,8268916][1, -1, 0, -19242, 8268916] 69173457625/2550136832-69173457625/2550136832 29047652352000000-29047652352000000 [][] 7776077760 1.83921.8392  

Rank

sage: E.rank()
 

The elliptic curves in class 8550i have rank 11.

Complex multiplication

The elliptic curves in class 8550i do not have complex multiplication.

Modular form 8550.2.a.i

sage: E.q_eigenform(10)
 
qq2+q4+q7q8+6q115q13q14+q16+3q17+q19+O(q20)q - q^{2} + q^{4} + q^{7} - q^{8} + 6 q^{11} - 5 q^{13} - q^{14} + q^{16} + 3 q^{17} + q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(139313931)\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.